Antiemetic efficacy and safety of granisetron or palonosetron alone and in combination with a corticosteroid for ABVD therapy-induced nausea and vomiting
Tóm tắt
Antiemetic effects and safety of granisetron or palonosetron alone and in combination with a corticosteroid against chemotherapy-induced nausea and vomiting (CINV) were retrospectively evaluated in patients with Hodgkin lymphoma receiving adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) therapy. A total of 39 patients were eligible for this study. Before ABVD therapy, granisetron or palonosetron was intravenously administered with or without a corticosteroid (dexamethasone or hydrocortisone) and aprepitant. The proportions of patients with complete control (CC) during the overall (0–120 h after the start of ABVD therapy), acute (0–24 h) and delayed (24–120 h) phases were evaluated. CC was defined as no vomiting and no use of antiemetic rescue medication with only grade 0–1 nausea. Granisetron and palonosetron were administered in 21 and 18 patients, respectively. The CC rate during the acute, delayed and overall phases was not statistically different between the two groups. The CINV was completely controlled during overall phase in 58.3% of patients receiving granisetron or palonosetron in combination with a corticosteroid, whereas in 11.1% of those without co-treatment of a corticosteroid (P < 0.05). There were significantly higher frequencies of anorexia, leucopenia and neutropenia in the palonosetron group. There is a statistically significant difference in the frequency of febrile neutropenia between presence and absence of a corticosteroid (p = 0.024). These findings suggested that a combination use of a corticosteroid with a 5-HT3 receptor antagonist was preferable for CINV control in patients with Hodgkin lymphoma receiving ABVD therapy, although the careful management of febrile neutropenia is required. The study approval numbers in the institution; 24–12 and 24–359. Registered April 17, 2012 and June 21, 2012.
Tài liệu tham khảo
Hesketh PJ. Chemotherapy-induced nausea and vomiting. N Engl J Med. 2008;358:2482–94.
NCCN. Clinical Practice Guidelines in Oncology-Antiemesis-Version II. Available from: https://www.nccn.org/professionals/physician_gls/pdf/antiemesis.pdf. Accessed 25 Dec 2017.
Hesketh PJ, Bohlke K, Lyman GH, Basch E, Chesney M, Clark-Snow RA, Danso MA, Jordan K, Somerfield MR, Kris MG, American Society of Clinical O. Antiemetics: American Society of Clinical Oncology focused guideline update. J Clin Oncol. 2016;34:381–6.
Oncology JSoC. JSCO Clinical Practice Guidelines 2015 for Antiemesis. Available from: http://www.jsco-cpg.jp/item/29/index.html. Accessed 25 Dec 2017.
Geling O, Eichler HG. Should 5-hydroxytryptamine-3 receptor antagonists be administered beyond 24 hours after chemotherapy to prevent delayed emesis? Systematic re-evaluation of clinical evidence and drug cost implications. J Clin Oncol. 2005;23:1289–94.
Gralla R, Lichinitser M, Van Der Vegt S, Sleeboom H, Mezger J, Peschel C, Tonini G, Labianca R, Macciocchi A, Aapro M. Palonosetron improves prevention of chemotherapy-induced nausea and vomiting following moderately emetogenic chemotherapy: results of a double-blind randomized phase III trial comparing single doses of palonosetron with ondansetron. Ann Oncol. 2003;14:1570–7.
Aapro MS, Grunberg SM, Manikhas GM, Olivares G, Suarez T, Tjulandin SA, Bertoli LF, Yunus F, Morrica B, Lordick F, Macciocchi A. A phase III, double-blind, randomized trial of palonosetron compared with ondansetron in preventing chemotherapy-induced nausea and vomiting following highly emetogenic chemotherapy. Ann Oncol. 2006;17:1441–9.
Eisenberg P, Figueroa-Vadillo J, Zamora R, Charu V, Hajdenberg J, Cartmell A, Macciocchi A, Grunberg S, Palonosetron SG. Improved prevention of moderately emetogenic chemotherapy-induced nausea and vomiting with palonosetron, a pharmacologically novel 5-HT3 receptor antagonist: results of a phase III, single-dose trial versus dolasetron. Cancer. 2003;98:2473–82.
Uchida M, Mori Y, Nakamura T, Kato K, Kamezaki K, Takenaka K, Shiratsuchi M, Kadoyama K, Miyamoto T, Akashi K. Comparison between antiemetic effects of palonosetron and granisetron on chemotherapy-induced nausea and vomiting in Japanese patients treated with R-CHOP. Biol Pharm Bull. 2017;40:1499–505.
López-Jiménez J, Martín-Ballesteros E, Sureda A, Uralburu C, Lorenzo I, del Campo R, Fernández C, Calbacho M, García-Belmonte D, Fernández G. Chemotherapy-induced nausea and vomiting in acute leukemia and stem cell transplant patients: results of a multicenter, observational study. Haematologica. 2006;91:84–91.
Mattiuzzi GN, Cortes JE, Blamble DA, Bekele BN, Xiao L, Cabanillas M, Borthakur G, O'Brien S, Kantarjian H. Daily palonosetron is superior to ondansetron in the prevention of delayed chemotherapy-induced nausea and vomiting in patients with acute myelogenous leukemia. Cancer. 2010;116:5659–66.
Bonadonna G, Santoro A, Bonfante V, Valagussa P. Cyclic delivery of MOPP and ABVD combinations in stage IV Hodgkin's disease: rationale, background studies, and recent results. Cancer Treat Rep. 1982;66:881–7.
Bonadonna G, Santoro A. ABVD chemotherapy in the treatment of Hodgkin's disease. Cancer Treat Rev. 1982;9:21–35.
Jørgensen M, Victor MA. Antiemetic efficacy of ondansetron and metoclopramide, both combined with corticosteroid, in malignant lymphoma patients receiving non-cisplatin chemotherapy. Acta Oncol. 1996;35:159–63.
Numbenjapon T, Sriswasdi C, Mongkonsritragoon W, Leelasiri A, Prayoonwiwat W. Comparative study of low-dose oral granisetron plus dexamethasone and high-dose metoclopramide plus dexamethasone in prevention of nausea and vomiting induced by CHOP-therapy in young patients with non-Hodgkin's lymphoma. J Med Assoc Thail. 2002;85:1156–63.
Saito M, Aogi K, Sekine I, Yoshizawa H, Yanagita Y, Sakai H, Inoue K, Kitagawa C, Ogura T, Mitsuhashi S. Palonosetron plus dexamethasone versus granisetron plus dexamethasone for prevention of nausea and vomiting during chemotherapy: a double-blind, double-dummy, randomised, comparative phase III trial. Lancet Oncol. 2009;10:115–24.
Suzuki K, Yamanaka T, Hashimoto H, Shimada Y, Arata K, Matsui R, Goto K, Takiguchi T, Ohyanagi F, Kogure Y, Nogami N, Nakao M, Takeda K, Azuma K, Nagase S, Hayashi T, Fujiwara K, Shimada T, Seki N, Yamamoto N. Randomized, double-blind, phase III trial of palonosetron versus granisetron in the triplet regimen for preventing chemotherapy-induced nausea and vomiting after highly emetogenic chemotherapy: TRIPLE study. Ann Oncol. 2016;27:1601–6.
Kubota K, Saito M, Aogi K, Sekine I, Yoshizawa H, Yanagita Y, Sakai H, Inoue K, Kitagawa C, Ogura T. Control of nausea with palonosetron versus granisetron, both combined with dexamethasone, in patients receiving cisplatin- or anthracycline plus cyclophosphamide-based regimens. Support Care Cancer. 2016;24:4025–33.
Roila F, Herrstedt J, Aapro M, Gralla RJ, Einhorn LH, Ballatori E, Bria E, Clark-Snow RA, Espersen BT, Feyer P, Grunberg SM, Hesketh PJ, Jordan K, Kris MG, Maranzano E, Molassiotis A, Morrow G, Olver I, Rapoport BL, Rittenberg C, Saito M, Tonato M, Warr D, Group EMGW. Guideline update for MASCC and ESMO in the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting: results of the Perugia consensus conference. Ann Oncol. 2010;21(Suppl 5):v232–43.
Vardy J, Chiew KS, Galica J, Pond GR, Tannock IF. Side effects associated with the use of dexamethasone for prophylaxis of delayed emesis after moderately emetogenic chemotherapy. Br J Cancer. 2006;94:1011–5.
Aapro M, Fabi A, Nole F, Medici M, Steger G, Bachmann C, Roncoroni S, Roila F. Double-blind, randomised, controlled study of the efficacy and tolerability of palonosetron plus dexamethasone for 1 day with or without dexamethasone on days 2 and 3 in the prevention of nausea and vomiting induced by moderately emetogenic chemotherapy. Ann Oncol. 2010;21:1083–8.
Grunberg SM. Antiemetic activity of corticosteroids in patients receiving cancer chemotherapy: dosing, efficacy, and tolerability analysis. Ann Oncol. 2007;18:233–40.
Herrstedt J, Roila F, Warr D, Celio L, Navari RM, Hesketh PJ, Chan A, Aapro MS. Updated MASCC/ESMO consensus recommendations: prevention of nausea and vomiting following high emetic risk chemotherapy. Support Care Cancer. 2016;2017(25):277–88.
Majumdar AK, McCrea JB, Panebianco DL, Hesney M, Dru J, Constanzer M, Goldberg MR, Murphy G, Gottesdiener KM, Lines CR, Petty KJ, Blum RA. Effects of aprepitant on cytochrome P450 3A4 activity using midazolam as a probe. Clin Pharmacol Ther. 2003;74:150–6.
Georgy A, Neceskas J, Goodin S. Antiemetic care for patients with breast cancer: focus on drug interactions and safety concerns. Am J Health Syst Pharm. 2007;64:2227–36.
Aapro MS, Walko CM. Aprepitant: drug-drug interactions in perspective. Ann Oncol. 2010;21:2316–23.
Hesketh PJ, Aapro M, Street JC, Carides AD. Evaluation of risk factors predictive of nausea and vomiting with current standard-of-care antiemetic treatment: analysis of two phase III trials of aprepitant in patients receiving cisplatin-based chemotherapy. Support Care Cancer. 2010;18:1171–7.
Warr DG, Street JC, Carides AD. Evaluation of risk factors predictive of nausea and vomiting with current standard-of-care antiemetic treatment: analysis of phase 3 trial of aprepitant in patients receiving adriamycin-cyclophosphamide-based chemotherapy. Support Care Cancer. 2011;19:807–13.
Machu TK. Therapeutics of 5-HT3 receptor antagonists: current uses and future directions. Pharmacol Ther. 2011;130:338–47.
Herr N, Bode C, Duerschmied D. The effects of serotonin in immune cells. Front Cardiovasc Med. 2017;4:48.
Shajib MS, Khan WI. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol (Oxf). 2015;213:561–74.
Maemondo M, Masuda N, Sekine I, Kubota K, Segawa Y, Shibuya M, Imamura F, Katakami N, Hida T, Takeo S, Group PJCS. A phase II study of palonosetron combined with dexamethasone to prevent nausea and vomiting induced by highly emetogenic chemotherapy. Ann Oncol. 2009;20:1860–6.