Antibiotics: past, present and future
Tóm tắt
Từ khóa
Tài liệu tham khảo
Katz, 2016, Natural product discovery: past, present, and future, J Ind Microbiol Biotechnol, 43, 155, 10.1007/s10295-015-1723-5
Prescott, 2014, The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology, Vet Microbiol, 171, 273, 10.1016/j.vetmic.2014.02.035
Walsh, 2014, Prospects for new antibiotics: a molecule-centered perspective, J Antibiot, 67, 7, 10.1038/ja.2013.49
Neil, 2016
Payne, 2006, Drugs for bad bugs: confronting the challenges of antibacterial discovery, Nat Rev Drug Discovery, 6, 29, 10.1038/nrd2201
Haas, 1999, Papyrus of Ebers and Smith, J Neurol Neurosurg Psychiatr, 67, 572, 10.1136/jnnp.67.5.578
Harrison, 2015, A 1,000-year-old antimicrobial remedy with antistaphylococcal activity, mBio, 6, 10.1128/mBio.01129-15
Gelpi, 2015, Magic bullet: Paul Ehrlich, Salvarsan and the birth of venereology, Sex Transm Infect, 91, 68, 10.1136/sextrans-2014-051779
Otten, 1986, Domagk and the development of the sulphonamides, J Antimicrobial Chemother, 17, 689, 10.1093/jac/17.6.689
Fleming, 1929, On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae, Br J Exp Pathol, 10, 226
Hodgkin, 1949, X-ray crystallographic investigation of the structure of penicillin, Adv Sci, 6, 85
Curtis, 2007, Robert Robinson and penicillin: an unnoticed document in the saga of its structure, J Pept Sci, 13, 769, 10.1002/psc.888
Brunel, 1951, Antibiosis from Pasteur to Fleming, J Hist Med Allied Sci, 6, 287, 10.1093/jhmas/VI.Summer.287
Frost, 2016, The antagonism exhibited by certain saprophytic bacteria against the Bacillus typhosus, J Infect Dis, 1, 1
Emmerich, 1899, Bakteriolytische Enzyme als Ursache der erworbenen Immunität und die Heilung von Infectionskrankheiten durch dieselben, Zeitschrift für Hygiene und Infektionskrankheiten, 31, 1
Hays, 1945, Antibiotic substances produced by Pseudomonas aeruginosa, J Biol Chem, 159, 725, 10.1016/S0021-9258(17)41580-8
Waksman, 2010, Production of antibiotic substances by actinomycetes, Ann N Y Acad Sci, 1213, 112, 10.1111/j.1749-6632.2010.05861.x
Newman, 2016, Natural products as sources of new drugs from 1981 to 2014, J Nat Prod, 79, 629, 10.1021/acs.jnatprod.5b01055
Payne, 2015, Time for a change: addressing R&D and commercialization challenges for antibacterials, Philos Trans R Soc Lond B Biol Sci, 370, 10.1098/rstb.2014.0086
Tommasi, 2015, ESKAPEing the labyrinth of antibacterial discovery, Nat Rev Drug Discov, 14, 529, 10.1038/nrd4572
Qin, 2017, Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants, Chem Sci, 8, 3218, 10.1039/C6SC04265A
Chu, 2016, Discovery of MRSA active antibiotics using primary sequence from the human microbiome, Nat Chem Biol, 12, 1004, 10.1038/nchembio.2207
Luo, 2013, Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster, Nat Commun, 4, 10.1038/ncomms3894
Embley, 1994, The molecular phylogeny and systematics of the actinomycetes, Annu Rev Microbiol, 48, 257, 10.1146/annurev.mi.48.100194.001353
Seipke, 2012, Streptomyces as symbionts: an emerging and widespread theme?, FEMS Microbiol Rev, 36, 862, 10.1111/j.1574-6976.2011.00313.x
Klassen, 2014, Microbial secondary metabolites and their impacts on insect symbioses, Curr Opin Insect Sci, 4, 15, 10.1016/j.cois.2014.08.004
Traxler, 2015, Natural products in soil microbe interactions and evolution, Nat Prod Rep, 32, 956, 10.1039/C5NP00013K
van der Meij, 2017, Chemical ecology of antibiotic production by actinomycetes, FEMS Microbiol Rev, 41, 392, 10.1093/femsre/fux005
Blin, 2019, antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline, Nucl Acids Res, 47, W81, 10.1093/nar/gkz310
Bauman, 2019, Refactoring the cryptic streptophenazine biosynthetic gene cluster unites phenazine, polyketide, and nonribosomal peptide biochemistry, Cell Chem Biol, 26, 724, 10.1016/j.chembiol.2019.02.004
Moon, 2019, Bioactivity-HiTES unveils cryptic antibiotics encoded in actinomycete bacteria, ACS Chem Biol, 14, 767, 10.1021/acschembio.9b00049
Rutledge, 2015, Discovery of microbial natural products by activation of silent biosynthetic gene clusters, Nat Rev Microbiol, 13, 509, 10.1038/nrmicro3496
Zhang, 2019, Unlocking the trove of metabolic treasures: activating silent biosynthetic gene clusters in bacteria and fungi, Curr Opin Microbiol, 51, 9, 10.1016/j.mib.2019.03.003
Gehrke, 2019, Silencing cryptic specialized metabolism in Streptomyces by the nucleoid-associated protein Lsr2, eLife, 8, W202, 10.7554/eLife.47691
Kaltenpoth, 2009, Actinobacteria as mutualists: general healthcare for insects?, Trends Microbiol, 17, 529, 10.1016/j.tim.2009.09.006
Palaniyandi, 2013, Effects of actinobacteria on plant disease suppression and growth promotion, Appl Microbiol Biotechnol, 97, 9621, 10.1007/s00253-013-5206-1
Viaene, 2016, Streptomyces as a plant’s best friend?, FEMS Microbiol Ecol, 92, fiw119, 10.1093/femsec/fiw119
Hoefler, 2017, A link between linearmycin biosynthesis and extracellular vesicle genesis connects specialized metabolism and bacterial membrane physiology, Cell Chem Biol, 24, 1238, 10.1016/j.chembiol.2017.08.008
Ziemert, 2014, Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora, Proc Natl Acad Sci U S A, 111, E1130, 10.1073/pnas.1324161111
Gulder, 2010, Salinosporamide natural products: potent 20 S proteasome inhibitors as promising cancer chemotherapeutics, Angew Chem Int Ed Engl, 49, 9346, 10.1002/anie.201000728
Heine, 2018, Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen, Nat Commun, 9, 10.1038/s41467-018-04520-1
Zan, 2019, A microbial factory for defensive kahalalides in a tripartite marine symbiosis, Science, 364, 10.1126/science.aaw6732
Wilson, 2015, An environmental bacterial taxon with a large and distinct metabolic repertoire, Nature, 506, 58, 10.1038/nature12959
Donia, 2014, A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics, Cell, 158, 1402, 10.1016/j.cell.2014.08.032
Zipperer, 2016, Human commensals producing a novel antibiotic impair pathogen colonization, Nature, 535, 511, 10.1038/nature18634
Lincke, 2010, Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum, Angew Chem Int Ed Engl, 49, 2011, 10.1002/anie.200906114
Nichols, 2010, Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species, Appl Environ Microbiol, 76, 2445, 10.1128/AEM.01754-09
Ling, 2015, A new antibiotic kills pathogens without detectable resistance, Nature, 517, 455, 10.1038/nature14098
Charlop-Powers, 2016, Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity, Proc Natl Acad Sci U S A, 113, 14811, 10.1073/pnas.1615581113
PEW Trust, 2019
Srinivas, 2010, Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa, Science, 327, 1010, 10.1126/science.1182749
Farrell, 2018, Revitalizing the drug pipeline: AntibioticDB, an open access database to aid antibacterial research and development, J Antimicrob Chemother, 73, 2284, 10.1093/jac/dky208
Jarrad, 2015, Clostridium difficile drug pipeline: challenges in discovery and development of new agents, J Med Chem, 58, 5164, 10.1021/jm5016846
Lehar, 2015, Novel antibody-antibiotic conjugate eliminates intracellular S. aureus, Nature, 527, 323, 10.1038/nature16057
van der Meer, 2014, Antimicrobial innovation: combining commitment, creativity and coherence, Nat Rev Drug Discov, 13, 709, 10.1038/nrd4448
Mullard, 2014, Momentum builds around new antibiotic business models, Nat Rev Drug Discov, 13, 711, 10.1038/nrd4455
Renwick, 2016, A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics, J Antibiot, 69, 73, 10.1038/ja.2015.98