Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tiềm năng chống bám bẩn của hợp chất quercetin từ vi khuẩn actinobacterium có nguồn gốc từ biển, Streptomyces fradiae PE7 và đặc điểm của nó
Tóm tắt
Một nỗ lực đã được thực hiện để tách chiết, tinh chế và xác định hợp chất chống bám bẩn từ Streptomyces fradiae PE7 được tách ra từ trầm tích cửa sông Vellar, Parangipettai, Nam Ấn Độ. Việc xác định vi sinh vật được thực hiện ở cấp độ loài dựa trên các đặc điểm hình thái, thành tế bào và đặc điểm phân tử. Chủng PE7 sản xuất lượng lớn hợp chất chống bám bẩn trong quá trình lên men bề mặt trên môi trường thạch so với lên men chìm. Trong tối ưu hóa quá trình lên men, một loạt đường, axit amin, khoáng chất, pH, nhiệt độ và nồng độ NaCl đã được tìm thấy có ảnh hưởng đến sản xuất hợp chất chống bám bẩn từ chủng PE7. Hợp chất chống bám bẩn PE7-C đã được tinh chế từ chiết xuất thô bằng phương pháp TLC chuẩn bị, và hoạt tính của nó đối với vi khuẩn bám bẩn đã được xác nhận qua phương pháp sinh học tự động hóa. Dựa trên các đặc điểm lý hóa, cấu trúc hóa học của hợp chất chống bám bẩn PE7-C đã được xác định là quercetin (C15H10O7), một hợp chất thuộc lớp flavonoid với trọng lượng phân tử 302.23 g/mol. Quercetin tinh chế có hoạt tính đối với 18 vi khuẩn bám bẩn với khoảng MIC từ 1.6 đến 25 μg/ml, sự nảy mầm của bào tử tảo và độ bám dính của chân động vật giáp xác lần lượt ở 100 μg/ml và 306 ± 19.6 μg ml−1. Nghiên cứu hiện tại, lần đầu tiên, báo cáo về quercetin từ Streptomyces sp. có nguồn gốc từ biển PE7 với hoạt tính chống bám bẩn. Điều này cũng dẫn đến việc tái sử dụng quercetin để phát triển các chất chống bám bẩn.
Từ khóa
#hợp chất quercetin #Streptomyces fradiae #chống bám bẩn #hoạt tính sinh học #xác định vi sinh vậtTài liệu tham khảo
Abdelmohsen UR, Yang C, Horn H, Hajjar D, Ravasi T, Hentschel U (2014) Actinomycetes from red sea sponges: sources for chemical and phylogenetic diversity. Mar Drugs 12:2771–2789
Alzieu C (2000) Environmental impact of TBT: the French experience. Sci Total Environ 258:99–102
Atta HM (2010) Production, purification, physic-chemical characteristics and biological activities of antifungal antibiotic produced by Streptomyces antibioticus, AZ-Z710. Am-Euras J Sci Res 5(1):39–49
Augustine SK, Bhavasar SP, Kapandins P (2005) A non-polyene antifungal antibiotic from Streptomyces albidoflavus PU23. J Biosci 30(2):201–211
Balagurunathan R, Radhakrishnan M, Somasundaram ST (2010) L-glutaminase producing actinomycetes from marine sediments—selective isolation, semi quantitative assay and characterization of potential strain. Aust J Basic Appl Sci 4(5):698–705
Bavya M, Mohanapriya P, Pazhanimurugan R, Balagurunathan R (2011) Potential bioactive compounds from marine actinomycetes against biofouling bacteria. Indian j Mar Sci 40(4):578–582
Becker B, Lechevalier MP, Lechevalier HA (1965) Chemical composition of cell-wall preparations from strains of various form genera of aerobic actinomycetes. Appl Microbiol 13:236–243
Bhattarai HD, Lee YK, Cho KH, Lee HK, Shin HW (2006) The study of antagonistic interactions among pelagic bacteria: a promising way to coin environmental friendly antifouling compounds. Hydrobiologia 568:417–423
Braun S, Vechtlifshitz SE (1991) Mycelial morphology and metabolite production. Trends Biotechnol 9:63–68
Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan LM, Berggren M, May U, Pisacane T, Granmo A, Adams DR (2003) The development of a marine natural product-based antifouling paint. Biofouling 19:197–205
Choma IM, Grzelak EM (2011) Bioautography detection in thin-layer chromatography. J Chromatogr A 1218:2684–2691
Davidson IC, Brown CW, Sytsma MD, Ruiz GM (2009) The role of containerships as transfer mechanisms of marine biofouling species. Biofouling 25:645–655
Dobretsov S, Dahms HU, Qian PY (2006) Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22:43–54
Eccleston GP, Brooks PR, Kurtboke DI (2008) The occurrence of bioactive micromonosporae in aquatic habitats of the sunshine coast in Australia. Mar Drugs 6:243–261
Finnie AA, Williams DN (2010) Paint and coatings technology for the control of marine fouling. In: Durr S, Thomason JC (eds) Biofouling. Wiley, New York, Oxford, pp 185–206
Foster MS, Harrold C, Hardin DD (1991) Point versus photo quadrat estimates of the cover of sessile marine organisms. J Exp Mar Biol Ecol 146:193–203
Goodfellow M, Williams E (1986) New strategies for the selective isolation of industrially important bacteria. Biotechnol Genet Eng Rev 4:213–262
Gopikrishnan V, Pazhanimurugan R, Shanmugasundaram T, Radhakrishnan M, Balagurunathan R (2013) Bioprospecting of actinobacteria from mangrove and estuarine sediments for antifouling compounds. Int J Innov Res Sci Eng Technol 2(7):2726–2735
Harborne JB (1983) Phytochemical Methods. Chapman and Hall, London
Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55(6):481–504
Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322
Henrikson AA, Pawlik JR (1995) A new antifouling assay method: results from field experiments using extracts of four marine organisms. J Exp Mar Biol Ecol 194:157–165
Karuppiah V, Wei S, Zhiyong L (2014) Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products. Appl Microbial Biotechnol 98(17):7365–7377
Kong NN, Fang ST, Liu Y, Wang JH, Yang CY, Xia CH (2014) Flavonoids from the halophyte Apocynum venetum and their antifouling activities against marine biofilm-derived bacteria. Nat Prod Res 28(12):928–931
Kumaran S, Radhakrishnan M, Balagurunathan R (2011) Biofouling inhibitory substances from marine actinomycetes isolated from Palk strait. Adv Bio Technol 10(12):22–26
Lakshmi VV, Akondi KB (2015) Control of biofouling in marine environment—past, present and future. Int J Sci Eng Res 6(2):283–286
Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251
Lee JH, Park JH, Cho HS, Joo SW, Cho MH, Lee J (2013) Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 29(5):491–499
Li X, Dobretsov S, Xu Y, Xiao X, Hung OS, Qian P (2006) Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus. Biofouling 22(3):187–194
Limnamol VP, Raveendran TV, Parameswaran PS (2009) Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick), nt. biodeterior. Biodegradation 63(1):67–72
Manivasagam P, Venkatesan J, Sivakumar K, Kim SK (2013) Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res 168:311–332
Materska M (2008) Quercetin and its derivatives: chemical structure and bioactivity—a review. Pol J Food Nutr Sci 58(4):407–413
Nimaichand S, Sanasam S, Zheng LQ, Zhu WY, Yang LL, Tang SK, Ningthoujam DS, Li WJ (2013) Rhodococcus canchipurensis sp. nov., a novel actinomycete isolated from a limestone deposit site in Manipur, India. Int J Syst Evol Microbiol 63:114–118
Nonomura H (1974) Key for classification and identification of 458 species of the streptomycetes included in ISP. J Ferment Technol 52:78
Omae M (2003) General aspects of tin-free antifouling paints. Chem Rev 103:3431–3448
Pettitt ME, Henry SL, Callow ME, Callow JA, Clare AS (2004) Activity of commercial enzymes on settlement and adhesion of Cypris larvae of the Barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta. Biofouling 20(6):299–311
Prior RL, Hoang H, Gu LW, Wu LZL, Bacchiocca M, Howard L (2003) Assays for hydrophilic and lipophilic antioxidant capacity [oxygen radical absorbance capacity (ORACFL) of plasma and other biological and food samples. J Agric Food Chem 51(11):3273–3279
Qian PY, Xu Y, Fusetani N (2009) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234
Qian PY, Chen L, Xu Y (2013) Mini-review: molecular mechanisms of antifouling compounds. Biofouling 29:381–400
Qian PY, Xu ZLY, Li Y, Fusetani N (2015) Mini-review: marine natural products and their synthetic analogs as antifouling compounds: 2009–2014. Biofouling 31(1):101–122
Radhakrishnan M, Balaji S, Balagurunathan R (2007) Thermotolerant actinomycetes from Himalayan Mountain—antagonistic potential, characterization and identification of selected strains. Malays Appl Biol 36(1):59–65
Radhakrishnan M, Balagurunathan R, Selvakumar N, Doble M, Kumar V (2011) Bioprospecting of marine derived actinomycetes with special reference to antimycobacterial activity. Indian J Geomarine Sci 40(3):407–410
Radhika S, Bharathi S, Radhakrishnan M, Balagurunathan R (2011) Bioprospecting of fresh water actinobacteria: isolation, characterization and antagonistic potential of selected actinobacteria. J Pharm Res 4(8):2584–2586
Reddy NG, Ramakrishna DPN, Gopal SVR (2011) A morphological, physiological and biochemical studies of marine Streptomyces rochei (MTCC 10109) showing antagonistic activity against selective human pathogenic microorganisms. Asian J Bio Sci 4:1–14
Selvameenal L, Radakrishnan M, Balagurunathan R (2009) Antibiotic pigment from desert soil actinomycetes; biological activity, purification and chemical screening. Indian J Pharm Sci 71:499–504
Selvin J, Lipton AP (2002) Development of a rapid mollusc foot adherence bioassay for detecting potent antifouling bioactive compounds. Curr Sci 83:735–737
Sen R (1997) Response surface optimization of the critical media components for the production of surfactin. J Chem Technol Biotechnol 68:263–270
Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340
Sivakumar K, Sahu MK, Thangaradjou T, Kannan L (2007) Research on marine actinobacteria in India. Indian J Microbiol 47:186–196
Skattebol L, Nilsen NO, Stenstrom Y, Andreassen P, Willemsen P (2006) The antifouling activity of some juvenoids on three species of acorn barnacle, Balanus. Pest Manag Sci 62:610–616
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739
Treskatis SK, Orgeldinger V, Wolf H, Gilles ED (1997) Morphological characterization of filamentous microorganisms in submerged cultures by on-line image analysis and pattern recognition. Biotechnol Bioeng 53:191–201
Xu Y, He H, Schulz S, Liu X, Fusetani N, Xiong H, Xiao X, Qian P (2010) Potent antifouling compounds produced by marine Streptomyces. Bioresour Technol 101:1331–1336
Zhang YF, Xiao K, Chandramouli KH, Xu Y, Pan K (2011) Acute toxicity of the antifouling compound butenolide in non-target organisms. PLoS ONE 6(8):1–10