Tiềm năng chống biofilm theo thời gian của vật liệu silicat ba canxi và sự kết hợp của nó với natri diclofenac

Springer Science and Business Media LLC - Tập 26 - Trang 2661-2669 - 2021
M. Ruiz-Linares1, C. Solana1, P. Baca1, M. T. Arias-Moliz2, C. M. Ferrer-Luque1
1Department of Stomatology, School of Dentistry, Granada, Spain
2Department of Microbiology, School of Dentistry, Granada, Spain

Tóm tắt

Mục tiêu của nghiên cứu này là điều tra hoạt động kháng vi sinh vật theo thời gian đối với các biofilm đa chủng và khả năng ức chế sự hình thành biofilm của Biodentine (BD) một mình và với 5% và 10% natri diclofenac (DC). Hoạt động kháng vi sinh vật của BD một mình và được điều chỉnh với 5% và 10% DC đối với sự phát triển của biofilm đa chủng trong ngà răng được xác định bằng bài kiểm tra tiếp xúc trực tiếp sửa đổi. Các nhóm nghiên cứu bao gồm (1) BD; (2) BD + 5% DC; và (3) BD + 10% DC. Độ sống sót của vi sinh vật sau 1 và 4 tuần được định lượng bằng cách sử dụng thử nghiệm ATP và phân tích tế bào dòng chảy. Hiệu quả kháng biofilm của các vật liệu, ngăn ngừa sự hình thành biofilm đa chủng theo thời gian, được đánh giá bằng kính hiển vi quét laser huỳnh quang (CLSM). Kết quả thu được từ cả thử nghiệm ATP và phân tích tế bào dòng chảy cho thấy rằng BD một mình và với 5% và 10% DC đã tạo ra hoạt động kháng biofilm so với nhóm kiểm soát, trong hai thời điểm được đánh giá (p < 0,001). So sánh giữa các nhóm cho thấy có xu hướng tăng cường hiệu ứng kháng vi sinh vật, cả theo thời gian và tùy thuộc vào nồng độ DC. Những kết quả này trùng với những gì được thu được trong phân tích CLSM, nơi hiệu quả tăng theo thời gian và nồng độ DC. Biodentine, theo thời gian, cho thấy hiệu quả kháng vi sinh vật và chống biofilm trên các biofilm đa chủng. Việc thêm 5% và 10% DC vào BD đã tăng cường hiệu ứng này, theo cách phụ thuộc vào nồng độ và thời gian.

Từ khóa

#Kháng vi sinh vật #Biofilm #Biodentine #Natri diclofenac #Kính hiển vi quét laser huỳnh quang #Thử nghiệm ATP.

Tài liệu tham khảo

Meschi N, Patel B, Ruparel NB (2020) Material pulp cells and tissue interactions. J Endod 46(9S):S150–S160. https://doi.org/10.1016/j.joen.2020.06.031 Parirokh M, Torabinejad M, Dummer PMH (2018) Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview—part I: vital pulp therapy. Int Endod J 51:177–205. https://doi.org/10.1111/iej.12841 Torabinejad M, Parirokh M, Dummer PMH (2018) Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. Int Endod J 51:284–317. https://doi.org/10.1111/iej.12843 Sequeira DB, Oliveira AR, Seabra CM, Palma PJ, Ramos C, Figueiredo MH, Santos AC, Cardoso AL, Peça J, Santos JM (2021) Regeneration of pulp-dentin complex using human stem cells of the apical papilla: in vivo interaction with two bioactive materials. Clin Oral Investig. https://doi.org/10.1007/s00784-021-03840-9 Giraud T, Jeanneau C, Rombouts C, Bakhtiar H, Laurent P, About I (2019) Pulp capping materials modulate the balance between inflammation and regeneration. Dent Mater 35:24–35. https://doi.org/10.1016/j.dental.2018.09.008 Wang Z, Shen Y, Haapasalo M (2014) Dental materials with antibiofilm properties. Dent Mater 30(2):e1-16. https://doi.org/10.1016/j.dental.2013.12.001 Rajasekharan S, Martens LC, Cauwels RGEC, Anthonappa RP, Verbeeck RMH (2018) Biodentine™ material characteristics and clinical applications: a 3 year literature review and update. Eur Arch Paediatr Dent 19:1–22. https://doi.org/10.1007/s40368-018-0328-x Sahin N, Saygili S, Akcay M (2021) Clinical, radiographic, and histological evaluation of three different pulp-capping materials in indirect pulp treatment of primary teeth: a randomized clinical trial. Clin Oral Investig 25:3945–3955. https://doi.org/10.1007/s00784-020-03724-4 Camilleri J, Sorrentino F, Damidot D (2013) Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater 29:580–593. https://doi.org/10.1016/j.dental.2013.03.007 Koutroulis A, Kuehne SA, Cooper PR, Camilleri J (2019) The role of calcium ion release on biocompatibility and antimicrobial properties of hydraulic cements. Sci Rep 9(1):19019. https://doi.org/10.1038/s41598-019-55288-3 Arias-Moliz MT, Farrugia C, Lung CYK, Wismayer PS, Camilleri J (2017) Antimicrobial and biological activity of leachate from light curable pulp capping materials. J Dent 64:45–51. https://doi.org/10.1016/j.jdent.2017.06.006 Nikhil V, Madan M, Agarwal C, Suri N (2014) Effect of addition of 2% chlorhexidine or 10% doxycycline on antimicrobial activity of biodentine. J Conserv Dent 17:271–275. https://doi.org/10.4103/0972-0707.131795 Poggio C, Arciola CR, Beltrami R, Monaco A, Dagna A, Lombardini M, Visai L (2014) Cytocompatibility and antibacterial properties of capping materials. ScientificWorldJournal 2014:181945. https://doi.org/10.1155/2014/181945 Bhavana V, Chaitanya KP, Gandi P, Patil J, Dola B, Reddy RB (2015) Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement. J Conserv Dent 18:44–46. https://doi.org/10.4103/0972-0707.148892 Koruyucu M, Topcuoglu N, Tuna EB, Ozel S, Gencay K, Kulekci G, Seymen F (2015) An assessment of antibacterial activity of three pulp capping materials on Enterococcus faecalis by a direct contact test: An in vitro study. Eur J Dent 9:240–245. https://doi.org/10.4103/1305-7456.156837 Ceci M, Beltrami R, Chiesa M, Colombo M, Poggio C (2015) Biological and chemical-physical properties of root-end filling materials: a comparative study. J Conserv Dent 18:94–99. https://doi.org/10.4103/0972-0707.153058 Özyürek T, Demiryürek EÖ (2016) Comparison of the antimicrobial activity of direct pulp-capping materials: mineral trioxide aggregate-Angelus and Biodentine. J Conserv Dent 19:569–572. https://doi.org/10.4103/0972-0707.194018 Farrugia C, Lung CYK, Schembri Wismayer P, Arias-Moliz MT, Camilleri J (2018) The relationship of surface characteristics and antimicrobial performance of pulp capping materials. J Endod 44:1115–1120. https://doi.org/10.1016/j.joen.2018.04.002 Deveci C, Tuzuner T, Cinar C, Odabas ME, Buruk CK (2019) Short-term antibacterial activity and compressive strength of biodentine containing chlorhexidine/cetirimide mixtures. Niger J Clin Pract 22:227–231. https://doi.org/10.4103/njcp.njcp_436_18 Elsaka SE, Elnaghy AM, Mandorah A, Elshazli AH (2019) Effect of titanium tetrafluoride addition on the physicochemical and antibacterial properties of Biodentine as intraorfice barrier. Dent Mater 35:185–193. https://doi.org/10.1016/j.dental.2018.11.019 Çırakoğlu S, Baddal B, İslam A (2020) The effectiveness of laser-activated irrigation on the apical microleakage qualities of MTA repair HP and NeoMTA plus in simulated immature teeth: a comparative study. Materials (Basel) 13(15):3287. https://doi.org/10.3390/ma13153287 Queiroz MB, Torres FFE, Rodrigues EM, Viola KS, Bosso-Martelo R, Chavez- Andrade GM, Souza MT, Zanotto ED, Guerreiro-Tanomaru JM, Tanomaru-Filho M (2021) Development and evaluation of reparative tricalcium silicate-ZrO2-Biosilicate composites. J Biomed Mater Res B Appl Biomater 109:468–476. https://doi.org/10.1002/jbm.b.34714 Pepelenko Pelepenko LE, Saavedra F, Antunes TBM, Bombarda GF, Gomes BPFA, Zaia AA, Camilleri J, Marciano MA (2021) Physicochemical, antimicrobial, and biological properties of White-MTAFlow. Clin Oral Investig 25:663–672. https://doi.org/10.1007/s00784-020-03543-7 Marggraf T, Ganas P, Paris S, Schwendicke F (2018) Bacterial reduction in sealed caries lesions is strain- and material-specific. Sci Rep 8(1):3767. https://doi.org/10.1038/s41598-018-21842-8 Jardine AP, Montagner F, Quintana RM, Zaccara IM, Kopper PMP (2019) Antimicrobial effect of bioceramic cements on multispecies microcosm biofilm: a confocal laser microscopy study. Clin Oral Investig 23:1367–1372. https://doi.org/10.1007/s00784-018-2551-6 Dastidar SG, Ganguly K, Chaudhuri K, Chakrabarty AN (2000) The anti-bacterial action of diclofenac shown by inhibition of DNA synthesis. Int J Antimicrob Agents 14:249–251. https://doi.org/10.1016/s0924-8579(99)00159-4 Dutta NK, Annadurai S, Mazumdar K, Dastidar SG, Kristiansen JE, Molnar J, Martins M, Amaral L (2007) Potential management of resistant microbial infections with a novel non-antibiotic: the anti-inflammatory drug diclofenac sodium. Int J Antimicrob Agents 30:242–249. https://doi.org/10.1016/j.ijantimicag.2007.04.018 Mazumdar K, Dastidar SG, Park JH, Dutta NK (2009) The anti-inflammatory non-antibiotic helper compound diclofenac: an antibacterial drug target. Eur J Clin Microbiol Infect Dis 28:881–891. https://doi.org/10.1007/s10096-009-0739-z Ferrer-Luque CM, Baca P, Solana C, Rodríguez-Archilla A, Arias-Moliz MT, Ruiz-Linares M (2021) Antibiofilm activity of diclofenac and antibiotic solutions in endodontic therapy. J Endod 47(7):1138–1143. https://doi.org/10.1016/j.joen.2021.04.004 de Freitas RP, Greatti VR, Alcalde MP, Cavenago BC, Vivan RR, Duarte MA, Weckwerth AC, Weckwerth PH (2017) Effect of the association of nonsteroidal anti-inflammatory and antibiotic drugs on antibiofilm activity and pH of calcium hydroxide pastes. J Endod 43:131–134. https://doi.org/10.1016/j.joen.2016.09.014 Ruiz-Linares M, Aguado-Pérez B, Baca P, Arias-Moliz MT, Ferrer-Luque CM (2017) Efficacy of antimicrobial solutions against polymicrobial root canal biofilm. Int Endod J 50:77–83. https://doi.org/10.1111/iej.12598 Zordan-Bronzel CL, Tanomaru-Filho M, Rodrigues EM, Chavez-Andrade GM, Faria G, Guerreiro-Tanomaru JM (2019) Cytocompatibility, bioactive potential and antimicrobial activity of an experimental calcium silicate based endodontic sealer. Int Endod J 52:979–986. https://doi.org/10.1111/iej.13086 Balouiri M, Sadiki M, Koraichi Ibnsouda S (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharma Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005 Tan KS, Yu VS, Quah SY, Bergenholtz G (2015) Rapid method for the detection of root canal bacteria in endodontic therapy. J Endod 41:447–450. https://doi.org/10.1016/j.joen.2014.11.025 Ruiz-Linares M, Baca P, Arias-Moliz MT, Ternero FJ, Rodríguez J, Ferrer-Luque CM (2019) Antibacterial and antibiofilm activity over time of GuttaFlow Bioseal and AH plus. Dent Mater J 38:701–706. https://doi.org/10.4012/dmj.2018-090 Chavez de Paz LE (2009) Image analysis software based on color segmentation for characterization of viability and physiological activity of biofilms. Appl Environ Microbiol 75:1734–1739. https://doi.org/10.1128/AEM.02000-08 Shen Y, Stojicic S, Haapasalo M (2011) Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod 37:657–661. https://doi.org/10.1016/j.joen.2011.02.007 Haapasalo M, Qian W, Portenier I, Waltimo T (2007) Effects of dentin on the antimicrobial properties of endodontic medicaments. J Endod 33:917–925. https://doi.org/10.1016/j.joen.2007.04.008 Bukhari S, Karabucak B (2019) The antimicrobial effect of bioceramic sealer on an 8-week matured Enterococcus faecalis biofilm attached to root canal dentinal surface. J Endod 45:1047–1052. https://doi.org/10.1016/j.joen.2019.04.004 Amalfitano S, Levantesi C, Copetti D, Stefani F, Locantore I, Guarnieri V, Lobascio C, Bersani F, Giacosa D, Detsis E, Rossetti S (2020) Water and microbial monitoring technologies towards the near future space exploration. Water Res 15(177):115787. https://doi.org/10.1016/j.watres.2020.115787 Shen Y, Stojicic S, Haapasalo M (2010) Bacterial viability in starved and revitalized biofilms: comparison of viability staining and direct culture. J Endod 36:1820–1823. https://doi.org/10.1016/j.joen.2010.08.029 Shen Y, Wang Z, Wang J, Zhou Y, Chen H, Wu C, Haapasalo M (2016) Bifunctional bioceramics stimulating osteogenic differentiation of a gingival fibroblast and inhibiting plaque biofilm formation. Biomater Sci 4:639–651. https://doi.org/10.1039/c5bm00534e Zehnder M, Waltimo T, Sener B, Söderling E (2006) Dentin enhances the effectiveness of bioactive glass S53P4 against a strain of Enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:530–535. https://doi.org/10.1016/j.tripleo.2005.03.014 Gandolfi MG, Siboni F, Polimeni A, Bossu FR, Riccitiello F, Rengo S, Prati C (2013) In vitro screening of the apatite-forming ability, biointeractivity and physical properties of a tricalcium silicate material for endodontics and restorative dentistry. Dent J 1:41–60. https://doi.org/10.3390/dj1040041 Gubler M, Brunner TJ, Zehnder M, Waltimo T, Sener B, Stark WJ (2008) Do bioactive glasses convey a disinfecting mechanism beyond a mere increase in pH? Int Endod J 41:670–678. https://doi.org/10.1111/j.1365-2591.2008.01413.x Zhang H, Pappen FG, Haapasalo M (2009) Dentin enhances the antibacterial effect of mineral trioxide aggregate and bioaggregate. J Endod 35:221–224. https://doi.org/10.1016/j.joen.2008.11.001 Bukhari S, Karabucak B (2019) The antimicrobial effect of bioceramic sealer on an 8-week matured Enterococcus faecalis biofilm attached to root canal dentinal surface. J Endod 45:1047–1052. https://doi.org/10.1016/j.joen.2019.04.004 Riordan JT, Dupre JM, Cantore-Matyi SA, Kumar-Singh A, Song Y, Zaman S, Horan S, Helal NS, Nagarajan V, Elasri MO, Wilkinson BJ, Gustafson JE (2011) Alterations in the transcriptome and antibiotic susceptibility of Staphylococcus aureus grown in the presence of diclofenac. Ann Clin Microbiol Antimicrob 21(10):30. https://doi.org/10.1186/1476-0711-10-30 Giraud T, Rufas P, Chmilewsky F, Rombouts C, Dejou J, Jeanneau C, About I (2017) Complement activation by pulp capping materials plays a significant role in bothinflammatory and pulp stem cells’ recruitment. J Endod 43:1104–1110. https://doi.org/10.1016/j.joen.2017.02.016 Giraud T, Jeanneau C, Bergmann M, Laurent P, About I (2018) Tricalcium Silicate capping materials modulate pulp healing and inflammatory activity in vitro. J Endod 44:1686–1691. https://doi.org/10.1016/j.joen.2018.06.009