Antibacterial metals and alloys for potential biomedical implants
Tóm tắt
Từ khóa
Tài liệu tham khảo
Reichman, 2009, Reducing surgical site infections. A review, Rev. Obstet. Gynecol., 2, 212
Grischke, 2016, Antimicrobial dental implant functionalization strategies —a systematic review, Dent. Mater. J., 35, 545, 10.4012/dmj.2015-314
Duske, 2015, Cold atmospheric plasma in combination with mechanical treatment improves osteoblast growth on biofilm covered titanium discs, Biomaterials, 52, 327, 10.1016/j.biomaterials.2015.02.035
Norowski, 2009, Biomaterial and antibiotic strategies for peri-implantitis: a review, J. Biomed. Mater. Res. B Appl. Biomater., 88B, 530, 10.1002/jbm.b.31152
Pye, 2009, A review of dental implants and infection, J. Hosp. Infect., 72, 104, 10.1016/j.jhin.2009.02.010
Li, 2016, Toward a molecular understanding of the antibacterial mechanism of copper-bearing titanium alloys against Staphylococcus aureus, Adv. Healthcare Mater., 5, 557, 10.1002/adhm.201500712
Helfet, 2003, AO philosophy and principles of fracture management - its evolution and evaluation, J. Bone Joint Surg. Am., 85A, 1156, 10.2106/00004623-200306000-00029
Laffer, 2006, Outcome of prosthetic knee-associated infection: evaluation of 40 consecutive episodes at a single centre, Clin. Microbiol. Infect., 12, 433, 10.1111/j.1469-0691.2006.01378.x
Wu, 2014, Risk factors for periprosthetic joint infection after total hip arthroplasty and total knee arthroplasty in Chinese patients, PloS One, 9
Kessler, 2012, Risk factors for periprosthetic ankle joint infection: a case-control study, J. Bone Joint Surg. Am., 94A, 1871, 10.2106/JBJS.K.00593
Liao, 2018, Enhanced antibacterial activity of curcumin by combination with metal ions, Colloid Interface Sci. Commun., 25, 1, 10.1016/j.colcom.2018.04.009
Campoccia, 2013, A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials, 34, 8533, 10.1016/j.biomaterials.2013.07.089
Zhao, 2009, Antibacterial coatings on titanium implants, J. Biomed. Mater. Res. B Appl. Biomater., 91B, 470, 10.1002/jbm.b.31463
Sahrmann, 2015, In vitro cleaning potential of three different implant debridement methods, Clin. Oral Implants Res., 26, 314, 10.1111/clr.12322
John, 2014, Rotating titanium brush for plaque removal from rough titanium surfaces - an in vitro study, Clin. Oral Implants Res., 25, 838, 10.1111/clr.12147
Zhang, 2013, Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel, Colloids Surf. B Biointerfaces, 105, 51, 10.1016/j.colsurfb.2012.12.025
Shirai, 2009, Prevention of pin tract infection with titanium-copper alloys, J. Biomed. Mater. Res. B Appl. Biomater., 91B, 373, 10.1002/jbm.b.31412
Zhang, 2013, A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property, Mater. Sci. Eng. C, 33, 4280, 10.1016/j.msec.2013.06.016
Feng, 2018, Fabrication and characterization of biodegradable Mg-Zn-Y-Nd-Ag alloy: microstructure, mechanical properties, corrosion behavior and antibacterial activities, Bioact. Mater., 3, 225, 10.1016/j.bioactmat.2018.02.002
Zhang, 2016, A new antibacterial Co-Cr-Mo-Cu alloy: preparation, biocorrosion, mechanical and antibacterial property, Mater. Sci. Eng. C, 69, 134, 10.1016/j.msec.2016.05.028
Lu, 2018, CoCrWCu alloy with antibacterial activity fabricated by selective laser melting: densification, mechanical properties and microstructural analysis, Powder Technol., 325, 289, 10.1016/j.powtec.2017.11.018
Ferraris, 2016, Antibacterial titanium surfaces for medical implants, Mater. Sci. Eng. C, 61, 965, 10.1016/j.msec.2015.12.062
Mitik-Dineva, 2009, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness, Curr. Microbiol., 58, 268, 10.1007/s00284-008-9320-8
Wang, 2020, Preparation and in vitro antibacterial properties of anodic coatings co-doped with Cu, Zn, and P on a Ti-6Al-4V alloy, Mater. Chem. Phys., 241
He, 2017, Biocompatibility, corrosion resistance and antibacterial activity of TiO2/CuO coating on titanium, Ceram. Int., 43, 16185, 10.1016/j.ceramint.2017.08.196
Hadidi, 2017, Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications, Surf. Coating. Technol., 321, 171, 10.1016/j.surfcoat.2017.04.055
Cao, 2011, Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects, Biomaterials, 32, 693, 10.1016/j.biomaterials.2010.09.066
Li, 2011, Microstructure and properties of Ag/N dual ions implanted titanium, Surf. Coating. Technol., 205, 5430, 10.1016/j.surfcoat.2011.06.006
Zhang, 2001, Surface properties of silver doped titanium oxide films, Surf. Coating. Technol., 148, 65, 10.1016/S0257-8972(01)01305-6
Cao, 2013, Electron storage mediated dark antibacterial action of bound silver nanoparticles: smaller is not always better, Acta Biomater., 9, 5100, 10.1016/j.actbio.2012.10.017
Wojcieszak, 2017, Influence of Cu, Au and Ag on structural and surface properties of bioactive coatings based on titanium, Mater. Sci. Eng. C, 71, 1115, 10.1016/j.msec.2016.11.091
Sun, 2016, Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance, Mater. Sci. Eng. C, 69, 744, 10.1016/j.msec.2016.07.050
Zheng, 2011, Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag, Acta Biomater., 7, 2758, 10.1016/j.actbio.2011.02.010
Hou, 2015, Antibacterial ability of Ag-TiO2 nanotubes prepared by ion implantation and anodic oxidation, Mater. Lett., 161, 309, 10.1016/j.matlet.2015.08.125
Hou, 2015, Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance, J. Hazard Mater., 299, 59, 10.1016/j.jhazmat.2015.05.014
Qin, 2015, Antimicrobial and osteogenic properties of silver-ion-implanted stainless steel, ACS Appl. Mater. Interfaces, 7, 10785, 10.1021/acsami.5b01310
Li, 2014, Antimicrobial activity and cytocompatibility of Ag plasma-modified hierarchical TiO2 film on titanium surface, Colloids Surf. B Biointerfaces, 113, 134, 10.1016/j.colsurfb.2013.08.030
Zhang, 2018, Loading Cu-doped magnesium oxide onto surface of magnetic nanoparticles to prepare magnetic disinfectant with enhanced antibacterial activity, Colloids Surf. B Biointerfaces, 161, 433, 10.1016/j.colsurfb.2017.11.010
Yao, 2014, Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation, Appl. Surf. Sci., 292, 944, 10.1016/j.apsusc.2013.12.083
Zhu, 2013, Biological activity and antibacterial property of nano-structured TiO2 coating incorporated with Cu prepared by micro-arc oxidation, J. Mater. Sci. Technol., 29, 237, 10.1016/j.jmst.2012.12.015
Yu, 2017, Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants, Acta Biomater., 49, 590, 10.1016/j.actbio.2016.11.067
Jin, 2014, Osteogenic activity and antibacterial effect of zinc ion implanted titanium, Colloids Surf. B Biointerfaces, 117, 158, 10.1016/j.colsurfb.2014.02.025
Huo, 2013, Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays, Biomaterials, 34, 3467, 10.1016/j.biomaterials.2013.01.071
Qin, 2014, In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium, Biomaterials, 35, 9114, 10.1016/j.biomaterials.2014.07.040
Burghardt, 2015, A dual function of copper in designing regenerative implants, Biomaterials, 44, 36, 10.1016/j.biomaterials.2014.12.022
Roknian, 2018, Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer's physiological solution, J. Alloys Compd., 740, 330, 10.1016/j.jallcom.2017.12.366
Mirak, 2016, Characterization, mechanical properties and corrosion resistance of biocompatible Zn-HA/TiO2 nanocomposite coatings, J. Mech. Behav. Biomed. Mater., 62, 282, 10.1016/j.jmbbm.2016.05.016
Luo, 2020, ZnO@ZnS nanorod-array coated titanium: good to fibroblasts but bad to bacteria, J. Colloid Interface Sci., 579, 50, 10.1016/j.jcis.2020.06.055
Yang, 2016, Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles, Colloids Surf. B Biointerfaces, 145, 597, 10.1016/j.colsurfb.2016.05.073
Shuai, 2018, A graphene oxide-Ag co-dispersing nanosystem: dual synergistic effects on antibacterial activities and mechanical properties of polymer scaffolds, Chem. Eng. J., 347, 322, 10.1016/j.cej.2018.04.092
Ahmed, 2016, Future prospects of antibacterial metal nanoparticles as enzyme inhibitor, Mater. Sci. Eng. C, 68, 939, 10.1016/j.msec.2016.06.034
Liu, 2016, Antibacterial effect of copper bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis, Sci. Rep., 6
Zhang, 2021, Synergistic antibacterial activity of physical-chemical multi-mechanism by TiO2 nanorod arrays for safe biofilm eradication on implant, Bioact. Mater., 6, 12, 10.1016/j.bioactmat.2020.07.017
Huang, 2019, A facile fabrication of novel stuff with antibacterial property and osteogenic promotion utilizing red phosphorus and near-infrared light, Bioact. Mater., 4, 17, 10.1016/j.bioactmat.2018.11.002
Zhang, 2020, An UV to NIR-driven platform based on red phosphorus/graphene oxide film for rapid microbial inactivation, Chem. Eng. J., 383, 123088, 10.1016/j.cej.2019.123088
Teng, 2020, Rapid and highly effective bacteria-killing by polydopamine/IR780@MnO2-Ti using near-infrared light, Prog. Nat. Sci.: Mater. Int., 30, 677, 10.1016/j.pnsc.2020.06.003
Han, 2020, Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds, Chem. Eng. J., 125194, 10.1016/j.cej.2020.125194
Zhu, 2020, Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing, J. Hazard Mater., 383
Park, 2014, Mesoporous TiO2 implants for loading high dosage of antibacterial agent, Appl. Surf. Sci., 303, 140, 10.1016/j.apsusc.2014.02.111
Zhang, 2013, Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies, Int. J. Nanomed., 8, 4379, 10.2147/IJN.S53221
Tu, 2012, Preparation and antibiotic drug release of mineralized collagen coatings on titanium, J. Mater. Sci. Mater. Med., 23, 2413, 10.1007/s10856-012-4692-5
Liu, 2017, Construction of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the surface self-antibacterial activity and cytocompatibility, Colloids Surf. B Biointerfaces, 151, 165, 10.1016/j.colsurfb.2016.12.016
Popat, 2007, Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes, Biomaterials, 28, 4880, 10.1016/j.biomaterials.2007.07.037
Davidson, 2015, Tetracycline tethered to titanium inhibits colonization by Gram-negative bacteria, J. Biomed. Mater. Res. B Appl. Biomater., 103, 1381, 10.1002/jbm.b.33310
Lv, 2014, Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation, J. Dent., 42, 1464, 10.1016/j.jdent.2014.06.003
He, 2014, Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant, J. R. Soc. Interface, 11, 10.1098/rsif.2014.0169
Cortizo, 2012, Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: evaluation of cytotoxicity and early bacterial adhesion, J. Dent., 40, 329, 10.1016/j.jdent.2012.01.008
Li, 2017, Antibacterial activity of AI-Hemocidin 2, a Novel N-Terminal peptide of hemoglobin purified from arca inflata, Mar. Drugs, 15, 10.3390/md15070205
Wimley, 2010, Describing the mechanism of antimicrobial peptide action with the interfacial activity model, ACS Chem. Biol., 5, 905, 10.1021/cb1001558
Semreen, 2018, Recent updates of marine antimicrobial peptides, Saudi Pharmaceut. J., 26, 396, 10.1016/j.jsps.2018.01.001
Shi, 2020, What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles?, Mater. Sci. Eng. C, 109, 110548, 10.1016/j.msec.2019.110548
Li, 2016, Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: in vitro and in vivo evaluations, Biomaterials, 106, 250, 10.1016/j.biomaterials.2016.08.031
Hu, 2020, Effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application, Mater. Sci. Eng. C, 110921, 10.1016/j.msec.2020.110921
Lei, 2018, Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching, Mater. Sci. Eng. C, 92, 121, 10.1016/j.msec.2018.06.024
Liu, 2020, Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity, J. Mater. Sci. Technol., 48, 130, 10.1016/j.jmst.2019.12.019
Liu, 2020, Effects of combined chemical design (Cu addition) and topographical modification (SLA) of Ti-Cu/SLA for promoting osteogenic, angiogenic and antibacterial activities, J. Mater. Sci. Technol., 47, 202, 10.1016/j.jmst.2019.10.045
Campoccia, 2013, A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces, Biomaterials, 34, 8018, 10.1016/j.biomaterials.2013.07.048
Sreekumari, 2005, Antibacterial metals - a viable solution for bacterial attachment and microbiologically influenced corrosion, Mater. Trans., 46, 1636, 10.2320/matertrans.46.1636
Kawakami, 2008, Antibacterial properties of metallic elements for alloying evaluated with application of JIS Z 2801:2000, ISIJ Int., 48, 1299, 10.2355/isijinternational.48.1299
Miyano, 2007, Evaluation of antibacterial ability of some pure metals, Tetsu to Hagane-J. Iron Steel Instit. Jpn., 93, 57, 10.2355/tetsutohagane.93.57
Heidenau, 2005, A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization, J. Mater. Sci. Mater. Med., 16, 883, 10.1007/s10856-005-4422-3
Du, 2009, Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions, Carbohydr. Polym., 75, 385, 10.1016/j.carbpol.2008.07.039
Wang, 2016, Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both?, J. Hazard Mater., 308, 328, 10.1016/j.jhazmat.2016.01.066
Zhu, 2012, Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica, Food Microbiol., 30, 303, 10.1016/j.fm.2011.12.001
Jin, 2014, Osteogenic activity and antibacterial effect of zinc ion implanted titanium, Colloids Surf. B Biointerfaces, 117, 158, 10.1016/j.colsurfb.2014.02.025
Franklin, 2007, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility, Environ. Sci. Technol., 41, 8484, 10.1021/es071445r
Tie, 2013, Antibacterial biodegradable Mg-Ag alloys, Eur. Cell. Mater., 25, 284, 10.22203/eCM.v025a20
Yamamoto, 1998, Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells, J. Biomed. Mater. Res., 39, 331, 10.1002/(SICI)1097-4636(199802)39:2<331::AID-JBM22>3.0.CO;2-E
Schaffer, 2013, Cold drawn bioabsorbable ferrous and ferrous composite wires: an evaluation of in vitro vascular cytocompatibility, Acta Biomater., 9, 8574, 10.1016/j.actbio.2012.07.043
Wu, 2012, In vitro cytotoxicity of Cu2+, Zn2+, Ag+ and their mixtures on primary human endometrial epithelial cells, Contraception, 85, 509, 10.1016/j.contraception.2011.09.016
Wong, 1988, Mutagenicity of heavy metals, Bull. Environ. Contam. Toxicol., 40, 597, 10.1007/BF01688386
White, 2001, An historical overview of the use of silver in wound management, Br. J. Nurs., 10, S3, 10.12968/bjon.2001.10.Sup4.16079
Slawson, 1992, Germanium and silver resistance, accumulation, and toxicity in microorganisms, Plasmid, 27, 72, 10.1016/0147-619X(92)90008-X
Berger, 1976, Electrically generated silver ions: quantitative effects on bacterial and mammalian cells, Antimicrob. Agents Chemother., 9, 357, 10.1128/AAC.9.2.357
Chopra, 2007, The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern?, J. Antimicrob. Chemother., 59, 587, 10.1093/jac/dkm006
Riaz, 2018, Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity, Mater. Sci. Eng. C, 90, 308, 10.1016/j.msec.2018.04.076
Ansari, 2018, Characterization and interplay of bacteriocin and exopolysaccharide-mediated silver nanoparticles as an antibacterial agent, Int. J. Biol. Macromol., 115, 643, 10.1016/j.ijbiomac.2018.04.104
Pattabi, 2013, Antibacterial applications of silver nanoparticles, Mater. Sci. Forum, 754, 131, 10.4028/www.scientific.net/MSF.754.131
Calderon, 2016, Nano-galvanic coupling for enhanced Ag+ release in ZrCN-Ag films: antibacterial application, Surf. Coating. Technol., 298, 1, 10.1016/j.surfcoat.2016.04.019
Catalano, 2016, Optically transparent silver-loaded mesoporous thin film coating with long-lasting antibacterial activity, Microporous Mesoporous Mater., 236, 158, 10.1016/j.micromeso.2016.08.034
Durdu, 2018, Fabrication, characterization and in vitro properties of silver-incorporated TiO2 coatings on titanium by thermal evaporation and micro-arc oxidation, Surf. Coating. Technol., 352, 600, 10.1016/j.surfcoat.2018.08.050
Rasoulzadehzali, 2018, Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin, Int. J. Biol. Macromol., 116, 54, 10.1016/j.ijbiomac.2018.04.140
Ferraris, 2017, In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols, Appl. Surf. Sci., 396, 461, 10.1016/j.apsusc.2016.10.177
Kang, 2012, Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti-Ag alloys, Mater. Res. Bull., 47, 2952, 10.1016/j.materresbull.2012.04.060
Chen, 2016, Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys, Mater. Sci. Eng. C, 62, 350, 10.1016/j.msec.2016.01.081
Hardes, 2007, The influence of elementary silver versus titanium on osteoblasts behaviour in vitro using human osteosarcoma cell lines, Sarcoma, 2007, 26539, 10.1155/2007/26539
Li, 2010, Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles, Toxicol. Lett., 197, 82, 10.1016/j.toxlet.2010.05.003
Jing, 2007, Antibacterial property of Ce-bearing stainless steels, J. Mater. Sci., 42, 5118, 10.1007/s10853-006-0603-9
UEP
Noyce, 2006, Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment, J. Hosp. Infect., 63, 289, 10.1016/j.jhin.2005.12.008
Noyce, 2006, Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing, Appl. Environ. Microbiol., 72, 4239, 10.1128/AEM.02532-05
Zevenhuizen, 1979, Inhibitory effects of copper on bacteria related to the free ion concentration, Microb. Ecol., 5, 139, 10.1007/BF02010505
Ning, 2015, Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism, Chem. Res. Toxicol., 28, 1815, 10.1021/acs.chemrestox.5b00258
Wang, 2015
Wang, 2016, The synergistic antibacterial activity and mechanism of multicomponent metal ions-containing aqueous solutions against Staphylococcus aureus, J. Inorg. Biochem., 163, 214, 10.1016/j.jinorgbio.2016.07.019
Kargozar, 2018, Mesoporous bioactive glasses: promising platforms for antibacterial strategies, Acta Biomater., 81, 1, 10.1016/j.actbio.2018.09.052
Fernandes, 2017, Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue, Acta Biomater., 59, 2, 10.1016/j.actbio.2017.06.046
Tamayo, 2016, Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces, Mater. Sci. Eng. C, 69, 1391, 10.1016/j.msec.2016.08.041
Zhang, 2019, Role of Cu element in biomedical metal alloy design, Rare Met., 38, 476, 10.1007/s12598-019-01245-y
Wang, 2021, Biological applications of copper-containing materials, Bioact. Mater., 6, 916, 10.1016/j.bioactmat.2020.09.017
Scheiber, 2014, Metabolism and functions of copper in brain, Prog. Neurobiol., 116, 33, 10.1016/j.pneurobio.2014.01.002
Jin, 2016, Bio-functional Cu containing biomaterials: a new way to enhance bio-adaption of biomaterials, J. Mater. Sci. Technol., 32, 835, 10.1016/j.jmst.2016.06.022
Squitti, 2015, The role of copper in human diet and risk of dementia, Cur. Nutr. Rep., 4, 114, 10.1007/s13668-015-0121-y
Gargiulo, 2013, Silver-containing mesoporous bioactive glass with improved antibacterial properties, J. Mater. Sci. Mater. Med., 24, 2129, 10.1007/s10856-013-4968-4
Lin, 2013, In vitro hydroxyapatite-forming ability and antimicrobial properties of mesoporous bioactive glasses doped with Ti/Ag, J. Nanomater., 2013, 24, 10.1155/2013/786420
Zhu, 2011, Composition-structure-property relationships of the CaO-MxOy-SiO2-P2O5 (M = Zr, Mg, Sr) mesoporous bioactive glass (MBG) scaffolds, J. Mater. Chem., 21, 9208, 10.1039/c1jm10838g
Zhang, 2010, Effects of Cu2+ and Cu+ on the proliferation, differentiation and calcification of primary mouse osteoblasts in vitro, Chin. J. Inorg. Chem., 26, 2251
Wu, 2013, Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity, Biomaterials, 34, 422, 10.1016/j.biomaterials.2012.09.066
Shi, 2017, The synergistic effect of micro/nano-structured and Cu2+-doped hydroxyapatite particles to promote osteoblast viability and antibacterial activity, Biomed. Mater., 12, 10.1088/1748-605X/aa6c8d
Klevay, 2002, Copper in legumes may lower heart disease risk, Arch. Intern. Med., 162, 1780, 10.1001/archinte.162.15.1780
Hu, 2015, Copper stimulates proliferation of human endothelial cells under culture, J. Cell. Biochem., 69, 326, 10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A
Giavaresi, 2005, Blood vessel formation after soft-tissue implantation of hyaluronan-based hydrogel supplemented with copper ions, Biomaterials, 26, 3001, 10.1016/j.biomaterials.2004.08.027
Zhang, 2018, Effects of copper nanoparticles in porous TiO2 coatings on bacterial resistance and cytocompatibility of osteoblasts and endothelial cells, Mater. Sci. Eng. C, 82, 110, 10.1016/j.msec.2017.08.061
Zhang, 2020, A potential strategy for in-stent restenosis: inhibition of migration and proliferation of vascular smooth muscle cells by Cu ion, Mater. Sci. Eng. C, 115, 111090, 10.1016/j.msec.2020.111090
Thit, 2013, Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6): effects on proliferation, cell cycle progression and cell death, Toxicol. Vitro, 27, 1596, 10.1016/j.tiv.2012.12.013
Bondarenko, 2012, Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action, Environ. Pollut., 169, 81, 10.1016/j.envpol.2012.05.009
Sarell, 2010, Substoichiometric levels of Cu2+ ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-beta from alzheimer disease, J. Biol. Chem., 285, 41533, 10.1074/jbc.M110.171355
Fontecave, 1993, Iron: metabolism, toxicity and therapy, Biochimie, 75, 767, 10.1016/0300-9084(93)90126-D
Purnama, 2010, Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation, Acta Biomater., 6, 1800, 10.1016/j.actbio.2010.02.027
Goldhaber, 2003, Trace element risk assessment: essentiality vs. toxicity, Regul. Toxicol. Pharmacol., 38, 232, 10.1016/S0273-2300(02)00020-X
Peuster, 2001, A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal - results 6-18 months after implantation into New Zealand white rabbits, Heart, 86, 563, 10.1136/heart.86.5.563
Waksman, 2008, Short-term effects of biocorrodible iron stents in porcine coronary arteries, J. Intervent. Cardiol., 21, 15, 10.1111/j.1540-8183.2007.00319.x
Peuster, 2006, Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta, Biomaterials, 27, 4955, 10.1016/j.biomaterials.2006.05.029
Peuster, 2001, A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits, Heart, 86, 563, 10.1136/heart.86.5.563
Zhang, 2015, Degradable porous Fe-35wt.%Mn produced via powder sintering from NH4HCO3 porogen, Mater. Chem. Phys., 163, 394, 10.1016/j.matchemphys.2015.07.056
Cochis, 2016, The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii, Biomaterials, 80, 80, 10.1016/j.biomaterials.2015.11.042
Yuan, 2013, Effect of the La alloying addition on the antibacterial capability of 316L stainless steel, Mater. Sci. Eng. C, 33, 446, 10.1016/j.msec.2012.09.012
Liu, 2018, Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria, Corrosion Sci., 132, 46, 10.1016/j.corsci.2017.12.006
Verissimo, 2015, Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn, J. Biomed. Mater. Res. A, 103A, 3757, 10.1002/jbm.a.35517
Kang, 2016, Controlling the antibacterial activity of CuSn thin films by varying the contents of Sn, Appl. Surf. Sci., 389, 1012, 10.1016/j.apsusc.2016.08.041
Vasanthi, 2013, Influence of Sn doping level on antibacterial activity and certain physical properties of ZnO films deposited using a simplified spray pyrolysis technique, Superlattice. Microst., 55, 180, 10.1016/j.spmi.2012.12.011
Fielding, 2012, Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings, Acta Biomater., 8, 3144, 10.1016/j.actbio.2012.04.004
Leung, 2005, Chlorhexidine-releasing methacrylate dental composite materials, Biomaterials, 26, 7145, 10.1016/j.biomaterials.2005.05.014
Lin, 2008, Synthesis, characterization and antibacterial property of strontium half and totally substituted hydroxyapatite nanoparticles, J. Wuhan Univ. Technol.-Materials Sci. Ed., 23, 475, 10.1007/s11595-006-4475-2
Shorr, 1952, The usefulness of strontium as an adjuvant to calcium in the remineralization of the skeleton in man, Bull. Hosp. Jt. Dis., 13, 59
Guida, 2003, Preliminary work on the antibacterial effect of strontium in glass ionomer cements, J. Mater. Sci. Lett., 22, 1401, 10.1023/A:1025794927195
Looney, 2013, An evaluation of the processing conditions, structure, and properties (biaxial flexural strength and antibacterial efficacy) of sintered strontium-zinc-silicate glass ceramics, J. Biomater. Appl., 27, 937, 10.1177/0885328211430423
Ravi, 2012, Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties, J. Am. Ceram. Soc., 95, 2700, 10.1111/j.1551-2916.2012.05262.x
Dabsie, 2009, Does strontium play a role in the cariostatic activity of glass ionomer?, J. Dent., 37, 554, 10.1016/j.jdent.2009.03.013
Brauer, 2013, Bactericidal strontium-releasing injectable bone cements based on bioactive glasses, J. R. Soc. Interface, 10, 10.1098/rsif.2012.0647
Bornapour, 2015, Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure, Mater. Sci. Eng. C, 46, 16, 10.1016/j.msec.2014.10.008
Bornapour, 2013, Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite, Acta Biomater., 9, 5319, 10.1016/j.actbio.2012.07.045
Brar, 2012, Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials, J. Mech. Behav. Biomed. Mater., 7, 87, 10.1016/j.jmbbm.2011.07.018
Gu, 2012, In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal, Acta Biomater., 8, 2360, 10.1016/j.actbio.2012.02.018
Gu, 2009, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 30, 484, 10.1016/j.biomaterials.2008.10.021
Shangguan, 2016, Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy, Mater. Sci. Eng. C, 69, 95, 10.1016/j.msec.2016.06.073
Shangguan, 2016, Investigation of the inner corrosion layer formed in pulse electrodeposition coating on Mg-Sr alloy and corresponding degradation behavior, J. Colloid Interface Sci., 481, 1, 10.1016/j.jcis.2016.07.032
Zhao, 2017, Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys, Mater. Sci. Eng. C, 70, 1081, 10.1016/j.msec.2016.04.012
Chen, 2020, In vitro and in vivo degradation behavior of Mg-2Sr-Ca and Mg-2Sr-Zn alloys, Bioact. Mater., 5, 275, 10.1016/j.bioactmat.2020.02.014
Almoudi, 2018, A systematic review on antibacterial activity of zinc against Streptococcus mutans, Saudi Dental J., 30, 283, 10.1016/j.sdentj.2018.06.003
Lynch, 2011, Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature, Int. Dent. J., 61, 46, 10.1111/j.1875-595X.2011.00049.x
Petrini, 2006, Antibacterial activity of zinc modified titanium oxide surface, Int. J. Artif. Organs, 29, 434, 10.1177/039139880602900414
Zhang, 2016, Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium, Ceram. Int., 42, 17095, 10.1016/j.ceramint.2016.07.220
Wang, 2017, Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO2/TiO2 coatings on Ti6Al4V implants, Mater. Sci. Eng. C, 75, 7, 10.1016/j.msec.2017.02.036
Zhang, 2016, Zn and Ag Co-doped anti-microbial TiO2 coatings on Ti by micro-arc oxidation, J. Mater. Sci. Technol., 32, 919, 10.1016/j.jmst.2016.01.008
Qi, 2017, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727, 792, 10.1016/j.jallcom.2017.08.142
Djurisic, 2015, Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts, Small, 11, 26, 10.1002/smll.201303947
Li, 2014, Influence of aqueous media on the ROS-mediated toxicity of ZnO nanoparticles toward green fluorescent protein-expressing Escherichia coli under UV-365 irradiation, Langmuir, 30, 2852, 10.1021/la5000028
Hu, 2012, Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium, Acta Biomater., 8, 904, 10.1016/j.actbio.2011.09.031
Bellanger, 2015, Stability and toxicity of ZnO quantum dots: interplay between nanoparticles and bacteria, J. Hazard Mater., 283, 110, 10.1016/j.jhazmat.2014.09.017
Kavitha, 2012, Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticle hybrids, Carbon, 50, 2994, 10.1016/j.carbon.2012.02.082
Zhang, 2008, ZnO nanofluids - a potential antibacterial agent, Prog. Nat. Sci., 18, 939, 10.1016/j.pnsc.2008.01.026
Yamaguchi, 1988, Zinc stimulation of bone protein synthesis in tissue culture: activation of aminoacyl-tRNA synthetase, Biochem. Pharmacol., 37, 4075, 10.1016/0006-2952(88)90098-6
Yamaguchi, 1987, Stimulatory effect of zinc on bone formation in tissue culture, Biochem. Pharmacol., 36, 4007, 10.1016/0006-2952(87)90471-0
Yamaguchi, 1986, Effect of essential trace metals on bone metabolism in weanling rats: comparison with zinc and other metals' actions, Res. Exp. Med., 186, 337, 10.1007/BF01852099
Yamaguchi, 1986, Action of zinc on bone metabolism in rats: increases in alkaline phosphatase activity and DNA content, Biochem. Pharmacol., 35, 773, 10.1016/0006-2952(86)90245-5
Yoo, 2004, Protection by pyruvate of rat retinal cells against zinc toxicity in vitro, and pressure-induced ischemia in vivo, Invest. Ophthalmol. Vis. Sci., 45, 1523, 10.1167/iovs.03-1315
Rodilla, 1998, Exposure of cultured human proximal tubular cells to cadmium, mercury, zinc and bismuth: toxicity and metallothionein induction, Chem. Biol. Interact., 115, 71, 10.1016/S0009-2797(98)00059-3
Kubasek, 2016, Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys, Mater. Sci. Eng. C, 58, 24, 10.1016/j.msec.2015.08.015
Ren, 2012, Preliminary study of anti-infective function of a copper-bearing stainless steel, Mater. Sci. Eng. C, 32, 1204, 10.1016/j.msec.2012.03.009
Huang, 2014, Antimicrobial behavior of Cu-bearing Zr-based bulk metallic glasses, Mater. Sci. Eng. C, 39, 325, 10.1016/j.msec.2014.03.017
Chu, 2014, Antimicrobial characteristics in Cu-containing Zr-based thin film metallic glass, Surf. Coating. Technol., 259, 87, 10.1016/j.surfcoat.2014.05.019
Zhang, 2019, Anti-bacterium influenced corrosion effect of antibacterial Ti-3Cu alloy in Staphylococcus aureus suspension for biomedical application, Mater. Sci. Eng. C, 94, 376, 10.1016/j.msec.2018.09.057
Bai, 2016, The anti-bacterial activity of titanium-copper sintered alloy against Porphyromonas gingivalis in vitro, Dent. Mater. J., 35, 659, 10.4012/dmj.2016-001
Wang, 2019, In vivo antibacterial property of Ti-Cu sintered alloy implant, Mater. Sci. Eng. C, 100, 38, 10.1016/j.msec.2019.02.084
Bekmurzayeva, 2018, Surface modification of stainless steel for biomedical applications: revisiting a century-old material, Mater. Sci. Eng. C, 93, 1073, 10.1016/j.msec.2018.08.049
Morihiro H, Katsuhisa M, Naoto O, Sadayuki N. Stainless stell excellent in antibacterial property and designing property. In: Nisshin Steel Co L, editor. Japenese Laid-Open Patent Publication. Japan1996.
Naoto O, Sadayuki N, Morihiro H. High strength martensitic stainless steel excellent in antibacterial characteristic. In: Nisshin Steel Co L, editor. Japenese Laid-Open Patent Publication. Japan1996.
Chen, 2004, Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel, Acta Metall. Sin., 40, 314
Yang, 2007, Antibacterial properties of an austenitic antibacterial stainless steel and its security for human body, J. Mater. Sci. Technol., 23, 333
Nan, 2007, Study on antibacterial properties of copper-containing antibacterial stainless steel, Acta Metall. Sin., 43, 1065
Nan, 2016, Effect of Cu addition on antibacterial property of type 200 stainless steel, Mater. Technol., 31, 44, 10.1179/1753555715Y.0000000025
Hong, 2005, Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel, Mater. Sci. Eng. A, 393, 213, 10.1016/j.msea.2004.10.032
Qiu, 2009, Effect of Cu on properties of antibacterial austenitic stainless steel, Iron Steel, 44, 81
Guan, 2020, The microstructure, antimicrobial properties, and corrosion resistance of Cu-bearing strip cast steel, Adv. Eng. Mater., 22, 10.1002/adem.201901265
Nan, 2008, Antibacterial mechanism of copper-bearing antibacterial stainless steel against E.coli, J. Mater. Sci. Technol., 24, 197
Nan, 2010, Cu ions dissolution from Cu-bearing antibacterial stainless steel, J. Mater. Sci. Technol., 26, 941, 10.1016/S1005-0302(10)60152-1
Li, 2015, Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water, J. Mater. Sci. Technol., 31, 243, 10.1016/j.jmst.2014.11.016
Liao, 2010, Effect of silver on antibacterial properties of stainless steel, Appl. Surf. Sci., 256, 3642, 10.1016/j.apsusc.2010.01.001
Sreekumari, 2003, Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion, ISIJ Int., 43, 1799, 10.2355/isijinternational.43.1799
Wang, 2016, Antimicrobial Cu-bearing stainless steel scaffolds, Mater. Sci. Eng. C, 68, 519, 10.1016/j.msec.2016.06.038
Zhuang, 2020, Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection, J. Biomed. Mater. Res. B Appl. Biomater., 108, 484, 10.1002/jbm.b.34405
Xi, 2017, Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel, Mater. Sci. Eng. C, 71, 1079, 10.1016/j.msec.2016.11.022
Chai, 2011, Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo, J. Mater. Sci. Mater. Med., 22, 2525, 10.1007/s10856-011-4427-z
Zhao, 2016, A novel ureteral stent material with antibacterial and reducing encrustation properties, Mater. Sci. Eng. C, 68, 221, 10.1016/j.msec.2016.04.103
Sun, 2016, An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel, Sci. Rep., 6
Bahmani-Oskooee, 2017, Cu-bearing, martensitic stainless steels for applications in biological environments, Mater. Des., 130, 442, 10.1016/j.matdes.2017.05.079
Liu, 2008, Study of a Cu-containing martensitic antibacterial stainless steel, Rare Met. Mater. Eng., 37, 1380
Wang, 2014, Effect of aging on antibacterial performance of Cu-bearing martensitic stainless steel, Mater. Technol., 29, 257, 10.1179/1753555714Y.0000000156
Wang, 2014, Effect of heat treatment on antibacterial performance of 3Cr13MoCu martensitic stainless steel, Acta Metall. Sin., 50, 1453
Wang, 2015, Effect of Cu content on antibacterial activity of 17-4 PH stainless steel, Mater. Technol., 30, B115
Nan, 2012, Antibacterial behavior of a Cu-bearing type 200 stainless steel, J. Mater. Sci. Technol., 28, 1067, 10.1016/S1005-0302(12)60174-1
Yang, 2016, Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel, Mater. Sci. Eng. C, 63, 376, 10.1016/j.msec.2016.03.014
Lou, 2016, Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater, Int. Biodeterior. Biodegrad., 110, 199, 10.1016/j.ibiod.2016.03.026
Liu, 2018, Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm, Int. Biodeterior. Biodegrad., 132, 132, 10.1016/j.ibiod.2018.03.002
Xiang, 2019, On the microstructure and mechanical properties of silver-bearing antibacterial CD4MCu duplex stainless steels: solid solution temperature, Mater. Express, 9, 1067, 10.1166/mex.2019.1600
Lin, 2011, The effect of copper on the properties of ferritic antibacterial stainless steel, Funct. Mater., 42, 549
Xie, 2011
Zhao, 2012, Effect of copper on the mechanical property and corrosion behavior of 19Cr-1.6Mo ferritic stainless steel, J. Iron Steel Res., 24, 45
Zhang, 2007
Xi, 2016, Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: a comprehensive cross-correlation study, Mater. Sci. Eng. A, 675, 243, 10.1016/j.msea.2016.08.058
Ran, 2013, Novel Cu-bearing economical 21Cr duplex stainless steels, Mater. Des., 46, 758, 10.1016/j.matdes.2012.11.017
Zhao, 2004
Luo, 2019, Study on properties of copper-containing austenitic antibacterial stainless steel, Mater. Technol., 34, 525, 10.1080/10667857.2019.1591726
Nan, 2008, Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy, J. Mater. Sci. Mater. Med., 19, 3057, 10.1007/s10856-008-3444-z
Ujiro, 2001, Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media, Corrosion Sci., 43, 2185, 10.1016/S0010-938X(01)00008-7
Jiang, 2016, Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel, Corrosion Sci., 113, 46, 10.1016/j.corsci.2016.10.003
Huang, 2018, Optimized antibacterial treatment for the Cu-bearing 420 stainless steel, Mater. Technol., 33, 699, 10.1080/10667857.2018.1497574
Jiang, 2016, Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel, Corrosion Sci., 113, 46, 10.1016/j.corsci.2016.10.003
Banas, 2000, The effect of copper on passivity and corrosion behaviour of ferritic and ferritic-austenitic stainless steels, Mater. Sci. Eng. A, 277, 183, 10.1016/S0921-5093(99)00530-4
Ren, 2011, Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel, Mater. Des., 32, 2374, 10.1016/j.matdes.2010.11.030
Nan, 2015, Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli, Mater. Sci. Eng. C, 48, 228, 10.1016/j.msec.2014.12.004
Xia, 2015, Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm, Biofouling, 31, 481, 10.1080/08927014.2015.1062089
Yuan, 2013, Antibacterial 316L stainless steel containing silver and niobium, Rare Met. Mater. Eng., 42, 2004, 10.1016/S1875-5372(14)60015-1
Cao, 2018, Cu-bearing stainless steel reduces cytotoxicity and crystals adhesion after ureteral epithelial cells exposing to calcium oxalate monohydrate, Sci. Rep., 8, 14094, 10.1038/s41598-018-32388-0
Ren, 2015, Osteogenic ability of Cu-bearing stainless steel, J. Biomed. Mater. Res. B Appl. Biomater., 103, 1433, 10.1002/jbm.b.33318
Li, 2015, Cu-bearing steel reduce inflammation after stent implantation, J. Mater. Sci. Mater. Med., 26, 114, 10.1007/s10856-015-5454-y
Zhao, 2018, Anti-fibrotic function of Cu-bearing stainless steel for reducing recurrence of urethral stricture after stent implantation, J. Biomed. Mater. Res. B, 106, 2019, 10.1002/jbm.b.34005
Zhao, 2017, In vitro study on infectious ureteral encrustation resistance of Cu-bearing stainless steel, J. Mater. Sci. Technol., 33, 1604, 10.1016/j.jmst.2017.03.025
Wang, 2017, Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process, Int. J. Nanomed., 12, 8443, 10.2147/IJN.S146866
Bai, 2015, Biocompatibility of antibacterial Ti-Cu sintered alloy: in vivo bone response, J. Mater. Sci. Mater. Med., 26, 265, 10.1007/s10856-015-5600-6
Zhang, 2016, Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application, Mater. Sci. Eng. C, 69, 1210, 10.1016/j.msec.2016.08.033
Guo, 2017, Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys, Mater. Sci. Eng. C, 72, 631, 10.1016/j.msec.2016.11.126
Krakhmalev, 2017, Functionalization of biomedical Ti6Al4V via in situ alloying by Cu during laser powder bed fusion manufacturing, Materials (Basel), 10, 10.3390/ma10101154
Liu, 2018, In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application, Dent. Mater. : Off. Publ. Acad. Dental Mater., 34, 1112, 10.1016/j.dental.2018.04.007
Ke, 2019, Characterization of a new Ti-13Nb-13Zr-10Cu alloy with enhanced antibacterial activity for biomedical applications, Mater. Lett., 253, 335, 10.1016/j.matlet.2019.07.008
Zhang, 2019, Additive manufacturing of ultrafine-grained high-strength titanium alloys, Nature, 576, 91, 10.1038/s41586-019-1783-1
Tao, 2020, Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti-3Cu alloys, J. Alloys Compd., 812, 152142, 10.1016/j.jallcom.2019.152142
Liu, 2016, Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings, Int. J. Nanomed., 11, 5743, 10.2147/IJN.S113674
Wang, 2014, In situ growth of self-organized Cu-containing nano-tubes and nano-pores on Ti90-xCu10Alx (x=0, 45) alloys by one-pot anodization and evaluation of their antimicrobial activity and cytotoxicity, Surf. Coating. Technol., 240, 167, 10.1016/j.surfcoat.2013.12.036
Liu, 2014, The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application, Biomed. Mater., 9, 10.1088/1748-6041/9/2/025013
Liu, 2014, Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys, Mater. Sci. Eng. C, 35, 392, 10.1016/j.msec.2013.11.028
Ma, 2016, In vitro study on an antibacterial Ti-5Cu alloy for medical application, J. Mater. Sci. Mater. Med., 27, 91, 10.1007/s10856-016-5698-1
Bao, 2018, Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment, Bioact. Mater., 3, 28, 10.1016/j.bioactmat.2018.01.004
Moniri Javadhesari, 2020, Biocompatibility, osseointegration, antibacterial and mechanical properties of nanocrystalline Ti-Cu alloy as a new orthopedic material, Colloids Surf. B Biointerfaces, 189, 110889, 10.1016/j.colsurfb.2020.110889
Wu, 2020, Effect of Ti2Cu precipitation on antibacterial property of Ti-5Cu alloy, Mater. Sci. Eng. C, 108, 110433, 10.1016/j.msec.2019.110433
Fowler, 2019, Antibacterial investigation of titanium-copper alloys using luminescent Staphylococcus epidermidis in a direct contact test, Mater. Sci. Eng. C, 97, 707, 10.1016/j.msec.2018.12.050
Chen, 2017, Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys, Mater. Sci. Eng. C, 75, 906, 10.1016/j.msec.2017.02.142
Nakajo, 2014, Inhibitory effect of Ti-Ag alloy on artificial biofilm formation, Dent. Mater. J., 33, 389, 10.4012/dmj.2013-334
Ma, 2015, Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy, J. Mater. Sci. Technol., 31, 723, 10.1016/j.jmst.2015.04.002
Ma, 2015, Study on antibacterial activity and cytocompatibility of Ti-6Al-4V-5Cu alloy, Mater. Technol., 30, B80, 10.1179/1753555714Y.0000000237
Peng, 2018, Effect of annealing temperature on mechanical and antibacterial properties of Cu-bearing titanium alloy and its preliminary study of antibacterial mechanism, Mater. Sci. Eng. C, 93, 495, 10.1016/j.msec.2018.08.018
Ren, 2014, Antibacterial properties of Ti-6Al-4V-xCu alloys, J. Mater. Sci. Technol., 30, 699, 10.1016/j.jmst.2013.12.014
Macpherson, 2017, Antibacterial titanium produced using selective laser melting, JOM (J. Occup. Med.), 69, 2719
Ou, 2017, A promising of alloying modified beta-type Titanium-Niobium implant for biomedical applications: microstructural characteristics, in vitro biocompatibility and antibacterial performance, J. Alloys Compd., 697, 231, 10.1016/j.jallcom.2016.12.120
Du, 2017, Antibacterial properties and corrosion resistance of the newly developed biomaterial, Ti-12Nb-1Ag Alloy, Metals, 7, 10.3390/met7120566
Takahashi, 2002, Mechanical properties and microstructures of dental cast Ti-Ag and Ti-Cu alloys, Dent. Mater. J., 21, 270, 10.4012/dmj.21.270
Kikuchi, 2003, Mechanical properties and microstructures of cast Ti-Cu alloys, Dent. Mater., 19, 174, 10.1016/S0109-5641(02)00027-1
Peng, 2019, Optimization of annealing treatment and comprehensive properties of Cu-containing Ti6Al4V-xCu alloys, J. Mater. Sci. Technol., 35, 2121, 10.1016/j.jmst.2019.05.020
Kikuchi, 2003, Mechanical properties and microstructures of cast Ti-Cu alloys, Dent. Mater., 19, 174, 10.1016/S0109-5641(02)00027-1
Alshammari, 2019, Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material, J. Mech. Behav. Biomed., 95, 232, 10.1016/j.jmbbm.2019.04.004
Wang, 2019, Optimization of mechanical property, antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant, J. Mater. Sci. Technol., 35, 2336, 10.1016/j.jmst.2019.03.044
Mukhopadhyay, 2015, Effect of nano Ti2Cu precipitates in Ti6Al4V2.5Cu alloy, Mater. Today: Proc., 2, 3580, 10.1016/j.matpr.2015.07.099
Takahashi, 2016, Mechanical properties and microstructures of dental cast Ti-6Nb-4Cu, Ti-18Nb-2Cu, and Ti-24Nb-1Cu alloys, Dent. Mater. J., 35, 564, 10.4012/dmj.2015-354
Zhang, 2011
Aoki, 2004, Mechanical properties of cast Ti-6Al-4V-xCu alloys, J. Oral Rehabil., 31, 1109, 10.1111/j.1365-2842.2004.01347.x
Jovanović, 2006, The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy, Mater. Des., 27, 192, 10.1016/j.matdes.2004.10.017
Zhang, 2016, Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys, Mater. Sci. Eng. C, 69, 760, 10.1016/j.msec.2016.07.051
Kikuchi, 2006, Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys, Dent. Mater., 22, 641, 10.1016/j.dental.2005.05.015
Cai, 2021, A novel biomedical titanium alloy with high antibacterial property and low elastic modulus, J. Mater. Sci. Technol., 81, 13, 10.1016/j.jmst.2021.01.015
Kikuchi, 2003, Grindability of cast Ti-Cu alloys, Dent. Mater., 19, 375, 10.1016/S0109-5641(02)00080-5
Koike, 2005, Corrosion behavior of cast Ti-6Al-4V alloyed with Cu, J. Biomed. Mater. Res., 73, 368, 10.1002/jbm.b.30225
Pina, 2016, Microstructural, electrochemical and tribo-electrochemical characterisation of titanium-copper biomedical alloys, Corrosion Sci., 109, 115, 10.1016/j.corsci.2016.02.014
Wang, 2015, Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy, Mater. Sci. Eng. C, 57, 123, 10.1016/j.msec.2015.07.046
Akbarpour, 2017, Wear performance of novel nanostructured Ti-Cu intermetallic alloy as a potential material for biomedical applications, J. Alloys Compd., 699, 882, 10.1016/j.jallcom.2017.01.020
Ottria, 2018, Mechanical, chemical and biological aspects of titanium and titanium alloys in implant dentistry, J. Biol. Regul. Homeost. Agents, 32, 81
Osório, 2010, Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for medical applications, Electrochim. Acta, 55, 759, 10.1016/j.electacta.2009.09.016
Zhang, 2009, Effect of Ag on the corrosion behavior of Ti–Ag alloys in artificial saliva solutions, Dent. Mater., 25, 672, 10.1016/j.dental.2008.10.016
Takahashi, 2006, Electrochemical behavior of cast Ti-Ag alloys, Dent. Mater., 25, 516, 10.4012/dmj.25.516
Takada, 2001, Microstructure and corrosion behavior of binary titanium alloys with beta-stabilizing elements, Dent. Mater., 20, 34, 10.4012/dmj.20.34
Wei, 2016, Correlation of ageing precipitates with the corrosion behaviour of Cu-4wt.% Ti alloys in 3.5wt.% NaCl solution, Corrosion Sci., 111, 382, 10.1016/j.corsci.2016.05.029
Ramezanzadeh, 2011, Studying the effects of micro and nano sized ZnO particles on the corrosion resistance and deterioration behavior of an epoxy-polyamide coating on hot-dip galvanized steel, Prog. Org. Coating, 71, 314, 10.1016/j.porgcoat.2011.03.026
Seah, 1995, A comparison between the coorrosion behaviour of sintered and unsintered porous titanium, Corrosion Sci., 37, 1333, 10.1016/0010-938X(95)00033-G
Ma, 2016, In vitro study on an antibacterial Ti-5Cu alloy for medical application, J. Mater. Sci. Mater. Med., 27, 10.1007/s10856-016-5698-1
Rolla, 1990, Critical evaluation of the composition and use of topical fluorides, with emphasis on the role of calcium fluoride in caries inhibition, Dent Res, 69, 780, 10.1177/00220345900690S150
Stookey, 1990, Critical evaluation of the composition and use of topical fluorides, Dent Res, 69, 805, 10.1177/00220345900690S154
Reclaru, 1998, Effects of fluorides on titanium and other dental alloys in dentistry, 19, 85
Nakagawa, 1999, Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use, J. Dent. Res., 78, 1568, 10.1177/00220345990780091201
Shim, 2005, Corrosion Resistance of titanium-silver alloys in an artificial saliva containing fluoride ions, J. Biomed. Mater. Res. B Appl. Biomater., 73B, 252, 10.1002/jbm.b.30206
Mutlu, 2014, Electrochemical Corrosion Behavior of TiN-coated biomedical Ti-Cu alloy foam in fluoride containing artificial saliva, Metall. Mater. Trans., 45, 3640, 10.1007/s11661-014-2264-7
Takahashi, 2011, Corrosion behavior of Ti-Ag alloys used in dentistry in lactic acid solution, Met. Mater. Int., 17, 175, 10.1007/s12540-011-0224-y
Zhang, 2015, Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys, Mater. Sci. Eng. C, 46, 148, 10.1016/j.msec.2014.10.021
Li, 2017, Effects of different copper contents on the adhesion and migration of osteoblasts, Chin. J. Pract. Stomatol., 10, 354
Tang, 2017, Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications, J. Mech. Behav. Biomed. Mater., 72, 182, 10.1016/j.jmbbm.2017.05.013
Xie, 2018, Fabrication and properties of porous Zn-Ag alloy scaffolds as biodegradable materials, Mater. Chem. Phys., 219, 433, 10.1016/j.matchemphys.2018.08.023
Yue, 2020, In vitro cytocompatibility, hemocompatibility and antibacterial properties of biodegradable Zn-Cu-Fe alloys for cardiovascular stents applications, Mater. Sci. Eng. C, 113, 111007, 10.1016/j.msec.2020.111007
Xiao, 2018, Indirectly extruded biodegradable Zn-0.05wt%Mg alloy with improved strength and ductility: in vitro and in vivo studies, J. Mater. Sci. Technol., 34, 1618, 10.1016/j.jmst.2018.01.006
Lin, 2020, A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications, Acta Biomater., 106, 410, 10.1016/j.actbio.2020.02.017
Zhang, 2021, Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application, Bioact. Mater., 6, 975, 10.1016/j.bioactmat.2020.09.019
Bakhsheshi-Rad, 2017, Fabrication of biodegradable Zn-Al-Mg alloy: mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities, Mater. Sci. Eng. C, 73, 215, 10.1016/j.msec.2016.11.138
Shi, 2019, Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8Mn alloy, Mater. Sci. Eng. C, 99, 969, 10.1016/j.msec.2019.02.044
Niu, 2016, Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application, Mater. Sci. Eng. C, 69, 407, 10.1016/j.msec.2016.06.082
Li, 2018, Mechanical characteristics, in vitro degradation, cytotoxicity, and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material, Int. J. Mol. Sci., 19
Katarivas Levy, 2017, The prospects of zinc as a structural material for biodegradable implants—a review paper, Metals., 7, 402, 10.3390/met7100402
Sikora-Jasinska, 2017, Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications, Mater. Sci. Eng. C, 77, 1170, 10.1016/j.msec.2017.04.023
Vojtěch, 2011, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, Acta Biomater., 7, 3515, 10.1016/j.actbio.2011.05.008
Kubásek, 2016, Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys, Mater. Sci. Eng. C, 58, 24, 10.1016/j.msec.2015.08.015
Gong, 2015, In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy, J. Biomed. Mater. Res. B Appl. Biomater., 103, 1632, 10.1002/jbm.b.33341
Mostaed, 2016, Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation, J. Mech. Behav. Biomed. Mater., 60, 581, 10.1016/j.jmbbm.2016.03.018
Li, 2015, Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr, Sci. Rep., 5, 10719, 10.1038/srep10719
Ma, 2000, Unidirectional solidification of Zn-rich Zn-Cu peritectic alloys—I. Microstructure selection, Acta Mater., 48, 419, 10.1016/S1359-6454(99)00365-1
Yao, 2014, Effects of Mg on microstructure and corrosion properties of Zn-Mg alloy, J. Alloys Compd., 602, 101, 10.1016/j.jallcom.2014.03.025
Liu, 2016, Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application, Mater. Des., 94, 95, 10.1016/j.matdes.2015.12.128
Sun, 2017, Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys, Mater. Sci. Eng. A, 701, 129, 10.1016/j.msea.2017.06.037
Kabir, 2021, Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: biomechanical and biocorrosion perspectives, Bioact. Mater., 6, 836, 10.1016/j.bioactmat.2020.09.013
Pachla, 2021, Structural and mechanical aspects of hypoeutectic Zn-Mg binary alloys for biodegradable vascular stent applications, Bioact. Mater., 6, 26, 10.1016/j.bioactmat.2020.07.004
An, 2017, Promotive effect of zinc ions on the vitality, migration, and osteogenic differentiation of human dental pulp cells, Biol. Trace Elem. Res., 175, 112, 10.1007/s12011-016-0763-7
Qiao, 2014, Stimulation of bone growth following zinc incorporation into biomaterials, Biomaterials, 35, 6882, 10.1016/j.biomaterials.2014.04.101
Ma, 2015, Endothelial cellular responses to biodegradable metal zinc, ACS Biomater. Sci. Eng., 1, 1174, 10.1021/acsbiomaterials.5b00319
Wang, 2015, Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials, Acta Biomater., 21, 237, 10.1016/j.actbio.2015.04.011
Bowen, 2015, Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents, Mater. Sci. Eng. C, 56, 467, 10.1016/j.msec.2015.07.022
Yang, 2017, Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model, Biomaterials, 145, 92, 10.1016/j.biomaterials.2017.08.022
Staiger, 2006, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27, 1728, 10.1016/j.biomaterials.2005.10.003
Sezer, 2018, Review of magnesium-based biomaterials and their applications, J. Magnes. Alloys, 6, 23, 10.1016/j.jma.2018.02.003
Robinson, 2010, In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, Acta Biomater., 6, 1869, 10.1016/j.actbio.2009.10.007
Ren, 2011, Effect of surface coating on antibacterial behavior of magnesium based metals, Mater. Lett., 65, 3509, 10.1016/j.matlet.2011.07.109
Lock, 2014, Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications, J. Biomed. Mater. Res., 102A, 781, 10.1002/jbm.a.34741
Nan, 2015, Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli, Mater. Sci. Eng. C, 48, 228, 10.1016/j.msec.2014.12.004
Witte, 2006, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials, 27, 1013, 10.1016/j.biomaterials.2005.07.037
Hou, 2016, Reduced antibacterial property of metallic magnesium in vivo, Biomed. Mater., 12, 10.1088/1748-605X/12/1/015010
Li, 2014, Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection, Antimicrob. Agents Chemother., 58, 7586, 10.1128/AAC.03936-14
Rahim, 2015, Alkalization is responsible for antibacterial effects of corroding magnesium, J. Biomed. Mater. Res. A, 103, 3526, 10.1002/jbm.a.35503
Chen, 2018, Effect of copper content on the corrosion behaviors and antibacterial properties of binary Mg-Cu alloys, Mater. Technol., 33, 145, 10.1080/10667857.2018.1432170
He, 2015, Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial properties, J. Mater. Chem. B, 3, 6676, 10.1039/C5TB01319D
Qin, 2015, Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy, Biomaterials, 53, 211, 10.1016/j.biomaterials.2015.02.096
Gao, 2019, Improving in vitro and in vivo antibacterial functionality of Mg alloys through micro-alloying with Sr and Ga, Mater. Sci. Eng. C, 104, 109926, 10.1016/j.msec.2019.109926
Liu, 2016
Liu, 2016, Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects, Sci. Rep., 6
Zhang, 2019, Antimicrobial bioresorbable Mg-Zn-Ca alloy for bone repair in a comparison study with Mg-Zn-Sr alloy and pure Mg, ACS Biomater. Sci. Eng., 6, 517, 10.1021/acsbiomaterials.9b00903
Liu, 2017, Influence of the microstructure and silver content on degradation, cytocompatibility, and antibacterial properties of magnesium-silver alloys in vitro, Oxid Med Cell Longev, 2017, 8091265, 10.1155/2017/8091265
Brooks, 2018, Magnesium alloy AZ91 exhibits antimicrobial properties in vitro but not in vivo, J. Biomed. Mater. Res. B, 106, 221, 10.1002/jbm.b.33839
Yan, 2018, Corrosion and biological performance of biodegradable magnesium alloys mediated by low copper addition and processing, Mater. Sci. Eng. C, 93, 565, 10.1016/j.msec.2018.08.013
Wang, 2018, Antibacterial properties of new magnesium alloy implanted in vivo, Res. Tissue Eng. China, 22, 3451
Razzaghi, 2019, In vitro degradation, antibacterial activity and cytotoxicity of Mg-3Zn-xAg nanocomposites synthesized by mechanical alloying for implant applications, J. Mater. Eng. Perform., 28, 1441, 10.1007/s11665-019-03923-5
Li, 2016
Qu, 2017
Bakhsheshi-Rad, 2019, Synthesis and in-vitro characterization of biodegradable porous magnesium-based scaffolds containing silver for bone tissue engineering, Trans. Nonferrous Metals Soc. China, 29, 984, 10.1016/S1003-6326(19)65007-7
Cai, 2012, Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys, Mater. Sci. Eng. C, 32, 2570, 10.1016/j.msec.2012.07.042
Tie, 2014, In vitro mechanical and corrosion properties of biodegradable Mg-Ag alloys, Mater. Corrosion-Werkstoffe Und Korrosion, 65, 569, 10.1002/maco.201206903
Clark, 1965, Transmission electron microscopy study of age hardening in a Mg-5 wt.% Zn alloy, Acta Metall., 13, 1281, 10.1016/0001-6160(65)90039-8
Buha, 2008, Reduced temperature (22-100°C) ageing of an Mg-Zn alloy, Mater. Sci. Eng. A, 492, 11, 10.1016/j.msea.2008.02.038
Shi, 2006, Corrosion resistance of anodised single-phase Mg alloys, Surf. Coating. Technol., 201, 492, 10.1016/j.surfcoat.2005.11.081
Liu, 2010, Effects of heat treatment on corrosion behaviors of Mg-3Zn magnesium alloy, Trans. Nonferrous Metals Soc. China, 20, 1345, 10.1016/S1003-6326(09)60302-2
Yin, 2013, Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys, J. Mater. Sci. Mater. Med., 24, 1365, 10.1007/s10856-013-4856-y
Berglund, 2012, Synthesis and characterization of Mg-Ca-Sr alloys for biodegradable orthopedic implant applications, J. Biomed. Mater. Res. B, 100, 1524, 10.1002/jbm.b.32721
Zhen, 2015, Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys, Mater. Sci. Eng. C, 46, 202, 10.1016/j.msec.2014.08.038
Fischer, 2011, Reprint of: improved cytotoxicity testing of magnesium materials, Mater. Sci. Eng., B, 176, 1773, 10.1016/j.mseb.2011.06.002
Sun, 2019, Translational status of biomedical Mg devices in China, Bioact. Mater., 4, 358, 10.1016/j.bioactmat.2019.11.001
Rahim, 2016, Susceptibility of metallic magnesium implants to bacterial biofilm infections, J. Biomed. Mater. Res. A, 104, 1489, 10.1002/jbm.a.35680
Wang, 2014, Study on antibacterial performance of Cu-bearing cobalt-based alloy, Mater. Lett., 129, 88, 10.1016/j.matlet.2014.05.020
Jiang, 2019, A strong, wear- and corrosion-resistant, and antibacterial Co-30 at.% Cr-5 at.% Ag ternary alloy for medical implants, Mater. Des., 184, 108190, 10.1016/j.matdes.2019.108190
Hosman, 2011, Influence of Co-Cr particles and Co-Cr ions on the growth of staphylococcal biofilms, Int. J. Artif. Organs, 34, 759, 10.5301/ijao.5000031
Ren, 2016, A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties, Mater. Sci. Eng. C, 67, 461, 10.1016/j.msec.2016.05.069
Lu, 2018, Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting, J. Mech. Behav. Biomed. Mater., 81, 130, 10.1016/j.jmbbm.2018.02.026
Lu, 2016, Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition, Mater. Sci. Eng. C, 63, 37, 10.1016/j.msec.2016.02.057
Wang, 2020, Novel CoCrWNi alloys with Cu addition: microstructure, mechanical properties, corrosion properties and biocompatibility, J. Alloys Compd., 824, 153924, 10.1016/j.jallcom.2020.153924
Wang, 2020, Effect of Cu on Martensite Transformation of CoCrMo alloy for biomedical application, J. Mater. Sci. Technol., 52, 127, 10.1016/j.jmst.2020.04.012
Paustenbach, 2013, A review of the health hazards posed by cobalt, Crit. Rev. Toxicol., 43, 316, 10.3109/10408444.2013.779633
Tvermoes, 2015, Review of cobalt toxicokinetics following oral dosing: implications for health risk assessments and metal-on-metal hip implant patients, Crit. Rev. Toxicol., 45, 367, 10.3109/10408444.2014.985818
Pettersson, 2012, Inflammatory response by Ti, Co-Cr-Mo in cultures of human macrophages, Dent. Mater., 28, e32, 10.1016/j.dental.2012.07.079
Grass, 2011, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol., 77, 1541, 10.1128/AEM.02766-10
Wilks, 2005, The survival of Escherichia coli O157 on a range of metal surfaces, Int. J. Food Microbiol., 105, 445, 10.1016/j.ijfoodmicro.2005.04.021
Michels, 2005, Copper alloys for human infectious disease control
Mehtar, 2008, The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study, J. Hosp. Infect., 68, 45, 10.1016/j.jhin.2007.10.009
Yousuf, 2016, Understanding the antimicrobial activity behind thin- and thick-rolled copper plates, Appl. Microbiol. Biotechnol., 100, 5569, 10.1007/s00253-016-7361-7
Marais, 2010, Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility, J. Hosp. Infect., 74, 80, 10.1016/j.jhin.2009.07.010
Mikolay, 2010, Survival of bacteria on metallic copper surfaces in a hospital trial, Appl. Microbiol. Biotechnol., 87, 1875, 10.1007/s00253-010-2640-1
Palza, 2018, In situ antimicrobial behavior of materials with copper-based additives in a hospital environment, Int. J. Antimicrob. Agents, 51, 912, 10.1016/j.ijantimicag.2018.02.007
Borkow, 2009, Copper, an ancient remedy returning to fight microbial, fungal and viral infections, Curr. Chem. Biol., 3, 272
Santo, 2010, Isolation and characterization of bacteria resistant to metallic copper surfaces, Appl. Environ. Microbiol., 76, 1341, 10.1128/AEM.01952-09
Demetriou, 2010, Amorphous metals for hard-tissue prosthesis, JOM, 62, 83, 10.1007/s11837-010-0038-2
Buzzi, 2006, Cytotoxicity of Zr-based bulk metallic glasses, Intermetallics, 14, 729, 10.1016/j.intermet.2005.11.003
Sun, 2015, In vitro and in vivo biocompatibility of an Ag-bearing Zr-based bulk metallic glass for potential medical use, J. Non-Cryst. Solids, 419, 82, 10.1016/j.jnoncrysol.2015.03.039
Horton, 2011, Biomedical potential of a zirconium-based bulk metallic glass, MRS Proc., 754
Lin, 2012, Antibacterial effect of metallic glasses, Chin. Sci. Bull., 57, 1069, 10.1007/s11434-012-4997-2
Latuch, 2012
Lesz, 2013, Influence of copper addition on glass forming ability, thermal stability, structure and magnetic properties of Fe-Co-Based BMGs, Solid State Phenom., 203–204, 296, 10.4028/www.scientific.net/SSP.203-204.296
Chu, 2012, Thin film metallic glasses: unique properties and potential applications, Thin Solid Films, 520, 5097, 10.1016/j.tsf.2012.03.092
Chiang, 2010, Surface antimicrobial effects of Zr61Al7.5Ni10Cu17.5Si4 thin film metallic glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, acinetobacter baumannii and Candida albicans, Fooyin Journal of Health Sciences, 2, 12, 10.1016/S1877-8607(10)60008-2
Chu, 2014, Fabrication and characterizations of thin film metallic glasses: antibacterial property and durability study for medical application, Thin Solid Films, 561, 102, 10.1016/j.tsf.2013.08.111
Chen, 2014, Antimicrobial properties of Zr-Cu-Al-Ag thin film metallic glass, Thin Solid Films, 561, 98, 10.1016/j.tsf.2013.08.028
Subramanian, 2015, Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels, Int. J. Nanomed., 10, 17, 10.2147/IJN.S79977
Liu, 2016, Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses, Sci. Rep., 6
Tsai, 2012, Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating, Intermetallics, 31, 127, 10.1016/j.intermet.2012.06.014
Apreutesei, 2014, Microstructural, thermal and mechanical behavior of co-sputtered binary Zr-Cu thin film metallic glasses, Thin Solid Films, 561, 53, 10.1016/j.tsf.2013.05.177
Etiemble, 2017, Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications, J. Alloys Compd., 707, 155, 10.1016/j.jallcom.2016.12.259
Zhang, 2013, Effects of antibacterial heat treatment on cold workability of SUSXM7 Cu-bearing stainless steel, Hot Work. Technol., 42, 181
Li, 2019, Dose-response relationships between copper and its biocompatibility/antibacterial activities, J. Trace Elem. Med. Biol., 55, 127, 10.1016/j.jtemb.2019.06.015
Xiu, 2011, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions, Environ. Sci. Technol., 45, 9003, 10.1021/es201918f
Quaranta, 2011, Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces, Appl. Environ. Microbiol., 77, 416, 10.1128/AEM.01704-10
Padan, 2005, Alkaline pH homeostasis in bacteria: new insights, Biochim. Biophys. Acta Biomembr., 1717, 67, 10.1016/j.bbamem.2005.09.010
Burne, 2000, Alkali production by oral bacteria and protection against dental caries, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett., 193, 1, 10.1111/j.1574-6968.2000.tb09393.x
Dong, 2010, Investigation of Mg(OH)2 nanoparticles as an antibacterial agent, J. Nanoparticle Res., 12, 2101, 10.1007/s11051-009-9769-9
Jin, 2011, Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens, J. Nanoparticle Res., 13, 6877, 10.1007/s11051-011-0595-5
Chernousova, 2013, Silver as antibacterial agent: ion, nanoparticle, and metal, Angew. Chem. Int. Ed., 52, 1636, 10.1002/anie.201205923
Paladini, 2015, Metal-based antibacterial substrates for biomedical applications, Biomacromolecules, 16, 1873, 10.1021/acs.biomac.5b00773
Faria, 2014, Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets, Colloids Surf. B Biointerfaces, 113, 115, 10.1016/j.colsurfb.2013.08.006
Li, 2014, Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer, Sci. Rep., 4, 4359, 10.1038/srep04359
Li, 2014, Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application, Appl. Phys. Lett., 104, 10.1063/1.4885401
Wang, 2017, Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species, Biomaterials, 124, 25, 10.1016/j.biomaterials.2017.01.028
Reece, 2009, Proton-coupled electron transfer in biology: results from synergistic studies in natural and model systems, Annu. Rev. Biochem., 78, 673, 10.1146/annurev.biochem.78.080207.092132
Lovley, 1996, Humic substances as electron acceptors for microbial respiration, Nature, 382, 445, 10.1038/382445a0
Hernandez, 2001, Extracellular electron transfer, Cellular and Molecular Life Sciences CMLS, 58, 1562, 10.1007/PL00000796
Lemire, 2013, Antimicrobial activity of metals: mechanisms, molecular targets and applications, Nat. Rev. Microbiol., 11, 371, 10.1038/nrmicro3028
Zhang, 2020, Contact killing of Cu-bearing stainless steel based on charge transfer caused by the microdomain potential difference, ACS Appl. Mater. Interfaces, 12, 361, 10.1021/acsami.9b19596
Qiu, 2009
van der Mei, 2008, Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow, Biotechnol. Bioeng., 100, 810, 10.1002/bit.21820
Qi LF, Xu ZR, Jiang X, Hu CH, Zou XF. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 339:2693-27002004.
Gottenbos, 2001, Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria, J. Antimicrob. Chemother., 48, 7, 10.1093/jac/48.1.7
Murata, 2007, Permanent, non-leaching antibacterial surfaces—2: how high density cationic surfaces kill bacterial cells, Biomaterials, 28, 4870, 10.1016/j.biomaterials.2007.06.012
Strahl, 2010, Membrane potential is important for bacterial cell division, Proc. Natl. Acad. Sci. U.S.A., 107, 12281, 10.1073/pnas.1005485107
Zhang, 2008, Membrane lipid homeostasis in bacteria, Nat. Rev. Microbiol., 6, 222, 10.1038/nrmicro1839