Antibacterial metals and alloys for potential biomedical implants

Bioactive Materials - Tập 6 Số 8 - Trang 2569-2612 - 2021
Erlin Zhang1,2, Xiaotong Zhao1, Jiali Hu1, Ruoxian Wang1, Shan Fu1, Gaowu Qin1,2
1Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
2Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Reichman, 2009, Reducing surgical site infections. A review, Rev. Obstet. Gynecol., 2, 212

Grischke, 2016, Antimicrobial dental implant functionalization strategies —a systematic review, Dent. Mater. J., 35, 545, 10.4012/dmj.2015-314

Duske, 2015, Cold atmospheric plasma in combination with mechanical treatment improves osteoblast growth on biofilm covered titanium discs, Biomaterials, 52, 327, 10.1016/j.biomaterials.2015.02.035

Norowski, 2009, Biomaterial and antibiotic strategies for peri-implantitis: a review, J. Biomed. Mater. Res. B Appl. Biomater., 88B, 530, 10.1002/jbm.b.31152

Pye, 2009, A review of dental implants and infection, J. Hosp. Infect., 72, 104, 10.1016/j.jhin.2009.02.010

Li, 2016, Toward a molecular understanding of the antibacterial mechanism of copper-bearing titanium alloys against Staphylococcus aureus, Adv. Healthcare Mater., 5, 557, 10.1002/adhm.201500712

Helfet, 2003, AO philosophy and principles of fracture management - its evolution and evaluation, J. Bone Joint Surg. Am., 85A, 1156, 10.2106/00004623-200306000-00029

Laffer, 2006, Outcome of prosthetic knee-associated infection: evaluation of 40 consecutive episodes at a single centre, Clin. Microbiol. Infect., 12, 433, 10.1111/j.1469-0691.2006.01378.x

Wu, 2014, Risk factors for periprosthetic joint infection after total hip arthroplasty and total knee arthroplasty in Chinese patients, PloS One, 9

Kessler, 2012, Risk factors for periprosthetic ankle joint infection: a case-control study, J. Bone Joint Surg. Am., 94A, 1871, 10.2106/JBJS.K.00593

Liao, 2018, Enhanced antibacterial activity of curcumin by combination with metal ions, Colloid Interface Sci. Commun., 25, 1, 10.1016/j.colcom.2018.04.009

Campoccia, 2013, A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials, 34, 8533, 10.1016/j.biomaterials.2013.07.089

Zhao, 2009, Antibacterial coatings on titanium implants, J. Biomed. Mater. Res. B Appl. Biomater., 91B, 470, 10.1002/jbm.b.31463

Sahrmann, 2015, In vitro cleaning potential of three different implant debridement methods, Clin. Oral Implants Res., 26, 314, 10.1111/clr.12322

John, 2014, Rotating titanium brush for plaque removal from rough titanium surfaces - an in vitro study, Clin. Oral Implants Res., 25, 838, 10.1111/clr.12147

Zhang, 2013, Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel, Colloids Surf. B Biointerfaces, 105, 51, 10.1016/j.colsurfb.2012.12.025

Shirai, 2009, Prevention of pin tract infection with titanium-copper alloys, J. Biomed. Mater. Res. B Appl. Biomater., 91B, 373, 10.1002/jbm.b.31412

Zhang, 2013, A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property, Mater. Sci. Eng. C, 33, 4280, 10.1016/j.msec.2013.06.016

Feng, 2018, Fabrication and characterization of biodegradable Mg-Zn-Y-Nd-Ag alloy: microstructure, mechanical properties, corrosion behavior and antibacterial activities, Bioact. Mater., 3, 225, 10.1016/j.bioactmat.2018.02.002

Zhang, 2016, A new antibacterial Co-Cr-Mo-Cu alloy: preparation, biocorrosion, mechanical and antibacterial property, Mater. Sci. Eng. C, 69, 134, 10.1016/j.msec.2016.05.028

Lu, 2018, CoCrWCu alloy with antibacterial activity fabricated by selective laser melting: densification, mechanical properties and microstructural analysis, Powder Technol., 325, 289, 10.1016/j.powtec.2017.11.018

Ferraris, 2016, Antibacterial titanium surfaces for medical implants, Mater. Sci. Eng. C, 61, 965, 10.1016/j.msec.2015.12.062

Mitik-Dineva, 2009, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness, Curr. Microbiol., 58, 268, 10.1007/s00284-008-9320-8

Wang, 2020, Preparation and in vitro antibacterial properties of anodic coatings co-doped with Cu, Zn, and P on a Ti-6Al-4V alloy, Mater. Chem. Phys., 241

He, 2017, Biocompatibility, corrosion resistance and antibacterial activity of TiO2/CuO coating on titanium, Ceram. Int., 43, 16185, 10.1016/j.ceramint.2017.08.196

Hadidi, 2017, Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications, Surf. Coating. Technol., 321, 171, 10.1016/j.surfcoat.2017.04.055

Cao, 2011, Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects, Biomaterials, 32, 693, 10.1016/j.biomaterials.2010.09.066

Li, 2011, Microstructure and properties of Ag/N dual ions implanted titanium, Surf. Coating. Technol., 205, 5430, 10.1016/j.surfcoat.2011.06.006

Zhang, 2001, Surface properties of silver doped titanium oxide films, Surf. Coating. Technol., 148, 65, 10.1016/S0257-8972(01)01305-6

Cao, 2013, Electron storage mediated dark antibacterial action of bound silver nanoparticles: smaller is not always better, Acta Biomater., 9, 5100, 10.1016/j.actbio.2012.10.017

Wojcieszak, 2017, Influence of Cu, Au and Ag on structural and surface properties of bioactive coatings based on titanium, Mater. Sci. Eng. C, 71, 1115, 10.1016/j.msec.2016.11.091

Sun, 2016, Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance, Mater. Sci. Eng. C, 69, 744, 10.1016/j.msec.2016.07.050

Zheng, 2011, Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag, Acta Biomater., 7, 2758, 10.1016/j.actbio.2011.02.010

Hou, 2015, Antibacterial ability of Ag-TiO2 nanotubes prepared by ion implantation and anodic oxidation, Mater. Lett., 161, 309, 10.1016/j.matlet.2015.08.125

Hou, 2015, Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance, J. Hazard Mater., 299, 59, 10.1016/j.jhazmat.2015.05.014

Qin, 2015, Antimicrobial and osteogenic properties of silver-ion-implanted stainless steel, ACS Appl. Mater. Interfaces, 7, 10785, 10.1021/acsami.5b01310

Li, 2014, Antimicrobial activity and cytocompatibility of Ag plasma-modified hierarchical TiO2 film on titanium surface, Colloids Surf. B Biointerfaces, 113, 134, 10.1016/j.colsurfb.2013.08.030

Zhang, 2018, Loading Cu-doped magnesium oxide onto surface of magnetic nanoparticles to prepare magnetic disinfectant with enhanced antibacterial activity, Colloids Surf. B Biointerfaces, 161, 433, 10.1016/j.colsurfb.2017.11.010

Yao, 2014, Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation, Appl. Surf. Sci., 292, 944, 10.1016/j.apsusc.2013.12.083

Zhu, 2013, Biological activity and antibacterial property of nano-structured TiO2 coating incorporated with Cu prepared by micro-arc oxidation, J. Mater. Sci. Technol., 29, 237, 10.1016/j.jmst.2012.12.015

Yu, 2017, Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants, Acta Biomater., 49, 590, 10.1016/j.actbio.2016.11.067

Jin, 2014, Osteogenic activity and antibacterial effect of zinc ion implanted titanium, Colloids Surf. B Biointerfaces, 117, 158, 10.1016/j.colsurfb.2014.02.025

Huo, 2013, Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays, Biomaterials, 34, 3467, 10.1016/j.biomaterials.2013.01.071

Qin, 2014, In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium, Biomaterials, 35, 9114, 10.1016/j.biomaterials.2014.07.040

Burghardt, 2015, A dual function of copper in designing regenerative implants, Biomaterials, 44, 36, 10.1016/j.biomaterials.2014.12.022

Roknian, 2018, Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer's physiological solution, J. Alloys Compd., 740, 330, 10.1016/j.jallcom.2017.12.366

Mirak, 2016, Characterization, mechanical properties and corrosion resistance of biocompatible Zn-HA/TiO2 nanocomposite coatings, J. Mech. Behav. Biomed. Mater., 62, 282, 10.1016/j.jmbbm.2016.05.016

Luo, 2020, ZnO@ZnS nanorod-array coated titanium: good to fibroblasts but bad to bacteria, J. Colloid Interface Sci., 579, 50, 10.1016/j.jcis.2020.06.055

Yang, 2016, Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles, Colloids Surf. B Biointerfaces, 145, 597, 10.1016/j.colsurfb.2016.05.073

Shuai, 2018, A graphene oxide-Ag co-dispersing nanosystem: dual synergistic effects on antibacterial activities and mechanical properties of polymer scaffolds, Chem. Eng. J., 347, 322, 10.1016/j.cej.2018.04.092

Ahmed, 2016, Future prospects of antibacterial metal nanoparticles as enzyme inhibitor, Mater. Sci. Eng. C, 68, 939, 10.1016/j.msec.2016.06.034

Liu, 2016, Antibacterial effect of copper bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis, Sci. Rep., 6

Zhang, 2021, Synergistic antibacterial activity of physical-chemical multi-mechanism by TiO2 nanorod arrays for safe biofilm eradication on implant, Bioact. Mater., 6, 12, 10.1016/j.bioactmat.2020.07.017

Huang, 2019, A facile fabrication of novel stuff with antibacterial property and osteogenic promotion utilizing red phosphorus and near-infrared light, Bioact. Mater., 4, 17, 10.1016/j.bioactmat.2018.11.002

Zhang, 2020, An UV to NIR-driven platform based on red phosphorus/graphene oxide film for rapid microbial inactivation, Chem. Eng. J., 383, 123088, 10.1016/j.cej.2019.123088

Teng, 2020, Rapid and highly effective bacteria-killing by polydopamine/IR780@MnO2-Ti using near-infrared light, Prog. Nat. Sci.: Mater. Int., 30, 677, 10.1016/j.pnsc.2020.06.003

Han, 2020, Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds, Chem. Eng. J., 125194, 10.1016/j.cej.2020.125194

Zhu, 2020, Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing, J. Hazard Mater., 383

Park, 2014, Mesoporous TiO2 implants for loading high dosage of antibacterial agent, Appl. Surf. Sci., 303, 140, 10.1016/j.apsusc.2014.02.111

Zhang, 2013, Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies, Int. J. Nanomed., 8, 4379, 10.2147/IJN.S53221

Tu, 2012, Preparation and antibiotic drug release of mineralized collagen coatings on titanium, J. Mater. Sci. Mater. Med., 23, 2413, 10.1007/s10856-012-4692-5

Liu, 2017, Construction of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the surface self-antibacterial activity and cytocompatibility, Colloids Surf. B Biointerfaces, 151, 165, 10.1016/j.colsurfb.2016.12.016

Popat, 2007, Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes, Biomaterials, 28, 4880, 10.1016/j.biomaterials.2007.07.037

Davidson, 2015, Tetracycline tethered to titanium inhibits colonization by Gram-negative bacteria, J. Biomed. Mater. Res. B Appl. Biomater., 103, 1381, 10.1002/jbm.b.33310

Lv, 2014, Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation, J. Dent., 42, 1464, 10.1016/j.jdent.2014.06.003

He, 2014, Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant, J. R. Soc. Interface, 11, 10.1098/rsif.2014.0169

Cortizo, 2012, Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: evaluation of cytotoxicity and early bacterial adhesion, J. Dent., 40, 329, 10.1016/j.jdent.2012.01.008

Li, 2017, Antibacterial activity of AI-Hemocidin 2, a Novel N-Terminal peptide of hemoglobin purified from arca inflata, Mar. Drugs, 15, 10.3390/md15070205

Wimley, 2010, Describing the mechanism of antimicrobial peptide action with the interfacial activity model, ACS Chem. Biol., 5, 905, 10.1021/cb1001558

Semreen, 2018, Recent updates of marine antimicrobial peptides, Saudi Pharmaceut. J., 26, 396, 10.1016/j.jsps.2018.01.001

Shi, 2020, What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles?, Mater. Sci. Eng. C, 109, 110548, 10.1016/j.msec.2019.110548

Li, 2016, Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: in vitro and in vivo evaluations, Biomaterials, 106, 250, 10.1016/j.biomaterials.2016.08.031

Hu, 2020, Effect of ultrasonic micro-arc oxidation on the antibacterial properties and cell biocompatibility of Ti-Cu alloy for biomedical application, Mater. Sci. Eng. C, 110921, 10.1016/j.msec.2020.110921

Lei, 2018, Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching, Mater. Sci. Eng. C, 92, 121, 10.1016/j.msec.2018.06.024

Liu, 2020, Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity, J. Mater. Sci. Technol., 48, 130, 10.1016/j.jmst.2019.12.019

Liu, 2020, Effects of combined chemical design (Cu addition) and topographical modification (SLA) of Ti-Cu/SLA for promoting osteogenic, angiogenic and antibacterial activities, J. Mater. Sci. Technol., 47, 202, 10.1016/j.jmst.2019.10.045

Campoccia, 2013, A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces, Biomaterials, 34, 8018, 10.1016/j.biomaterials.2013.07.048

Sreekumari, 2005, Antibacterial metals - a viable solution for bacterial attachment and microbiologically influenced corrosion, Mater. Trans., 46, 1636, 10.2320/matertrans.46.1636

Kawakami, 2008, Antibacterial properties of metallic elements for alloying evaluated with application of JIS Z 2801:2000, ISIJ Int., 48, 1299, 10.2355/isijinternational.48.1299

Miyano, 2007, Evaluation of antibacterial ability of some pure metals, Tetsu to Hagane-J. Iron Steel Instit. Jpn., 93, 57, 10.2355/tetsutohagane.93.57

Heidenau, 2005, A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization, J. Mater. Sci. Mater. Med., 16, 883, 10.1007/s10856-005-4422-3

Du, 2009, Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions, Carbohydr. Polym., 75, 385, 10.1016/j.carbpol.2008.07.039

Wang, 2016, Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both?, J. Hazard Mater., 308, 328, 10.1016/j.jhazmat.2016.01.066

Zhu, 2012, Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica, Food Microbiol., 30, 303, 10.1016/j.fm.2011.12.001

Jin, 2014, Osteogenic activity and antibacterial effect of zinc ion implanted titanium, Colloids Surf. B Biointerfaces, 117, 158, 10.1016/j.colsurfb.2014.02.025

Franklin, 2007, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility, Environ. Sci. Technol., 41, 8484, 10.1021/es071445r

Tie, 2013, Antibacterial biodegradable Mg-Ag alloys, Eur. Cell. Mater., 25, 284, 10.22203/eCM.v025a20

Yamamoto, 1998, Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells, J. Biomed. Mater. Res., 39, 331, 10.1002/(SICI)1097-4636(199802)39:2<331::AID-JBM22>3.0.CO;2-E

Schaffer, 2013, Cold drawn bioabsorbable ferrous and ferrous composite wires: an evaluation of in vitro vascular cytocompatibility, Acta Biomater., 9, 8574, 10.1016/j.actbio.2012.07.043

Wu, 2012, In vitro cytotoxicity of Cu2+, Zn2+, Ag+ and their mixtures on primary human endometrial epithelial cells, Contraception, 85, 509, 10.1016/j.contraception.2011.09.016

Wong, 1988, Mutagenicity of heavy metals, Bull. Environ. Contam. Toxicol., 40, 597, 10.1007/BF01688386

White, 2001, An historical overview of the use of silver in wound management, Br. J. Nurs., 10, S3, 10.12968/bjon.2001.10.Sup4.16079

Slawson, 1992, Germanium and silver resistance, accumulation, and toxicity in microorganisms, Plasmid, 27, 72, 10.1016/0147-619X(92)90008-X

Berger, 1976, Electrically generated silver ions: quantitative effects on bacterial and mammalian cells, Antimicrob. Agents Chemother., 9, 357, 10.1128/AAC.9.2.357

Chopra, 2007, The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern?, J. Antimicrob. Chemother., 59, 587, 10.1093/jac/dkm006

Riaz, 2018, Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity, Mater. Sci. Eng. C, 90, 308, 10.1016/j.msec.2018.04.076

Ansari, 2018, Characterization and interplay of bacteriocin and exopolysaccharide-mediated silver nanoparticles as an antibacterial agent, Int. J. Biol. Macromol., 115, 643, 10.1016/j.ijbiomac.2018.04.104

Pattabi, 2013, Antibacterial applications of silver nanoparticles, Mater. Sci. Forum, 754, 131, 10.4028/www.scientific.net/MSF.754.131

Calderon, 2016, Nano-galvanic coupling for enhanced Ag+ release in ZrCN-Ag films: antibacterial application, Surf. Coating. Technol., 298, 1, 10.1016/j.surfcoat.2016.04.019

Catalano, 2016, Optically transparent silver-loaded mesoporous thin film coating with long-lasting antibacterial activity, Microporous Mesoporous Mater., 236, 158, 10.1016/j.micromeso.2016.08.034

Durdu, 2018, Fabrication, characterization and in vitro properties of silver-incorporated TiO2 coatings on titanium by thermal evaporation and micro-arc oxidation, Surf. Coating. Technol., 352, 600, 10.1016/j.surfcoat.2018.08.050

Rasoulzadehzali, 2018, Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin, Int. J. Biol. Macromol., 116, 54, 10.1016/j.ijbiomac.2018.04.140

Ferraris, 2017, In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols, Appl. Surf. Sci., 396, 461, 10.1016/j.apsusc.2016.10.177

Kang, 2012, Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti-Ag alloys, Mater. Res. Bull., 47, 2952, 10.1016/j.materresbull.2012.04.060

Chen, 2016, Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys, Mater. Sci. Eng. C, 62, 350, 10.1016/j.msec.2016.01.081

Hardes, 2007, The influence of elementary silver versus titanium on osteoblasts behaviour in vitro using human osteosarcoma cell lines, Sarcoma, 2007, 26539, 10.1155/2007/26539

Li, 2010, Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles, Toxicol. Lett., 197, 82, 10.1016/j.toxlet.2010.05.003

Jing, 2007, Antibacterial property of Ce-bearing stainless steels, J. Mater. Sci., 42, 5118, 10.1007/s10853-006-0603-9

UEP

Noyce, 2006, Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment, J. Hosp. Infect., 63, 289, 10.1016/j.jhin.2005.12.008

Noyce, 2006, Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing, Appl. Environ. Microbiol., 72, 4239, 10.1128/AEM.02532-05

Zevenhuizen, 1979, Inhibitory effects of copper on bacteria related to the free ion concentration, Microb. Ecol., 5, 139, 10.1007/BF02010505

Ning, 2015, Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism, Chem. Res. Toxicol., 28, 1815, 10.1021/acs.chemrestox.5b00258

Wang, 2015

Wang, 2016, The synergistic antibacterial activity and mechanism of multicomponent metal ions-containing aqueous solutions against Staphylococcus aureus, J. Inorg. Biochem., 163, 214, 10.1016/j.jinorgbio.2016.07.019

Kargozar, 2018, Mesoporous bioactive glasses: promising platforms for antibacterial strategies, Acta Biomater., 81, 1, 10.1016/j.actbio.2018.09.052

Fernandes, 2017, Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue, Acta Biomater., 59, 2, 10.1016/j.actbio.2017.06.046

Tamayo, 2016, Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces, Mater. Sci. Eng. C, 69, 1391, 10.1016/j.msec.2016.08.041

Zhang, 2019, Role of Cu element in biomedical metal alloy design, Rare Met., 38, 476, 10.1007/s12598-019-01245-y

Wang, 2021, Biological applications of copper-containing materials, Bioact. Mater., 6, 916, 10.1016/j.bioactmat.2020.09.017

Scheiber, 2014, Metabolism and functions of copper in brain, Prog. Neurobiol., 116, 33, 10.1016/j.pneurobio.2014.01.002

Jin, 2016, Bio-functional Cu containing biomaterials: a new way to enhance bio-adaption of biomaterials, J. Mater. Sci. Technol., 32, 835, 10.1016/j.jmst.2016.06.022

Squitti, 2015, The role of copper in human diet and risk of dementia, Cur. Nutr. Rep., 4, 114, 10.1007/s13668-015-0121-y

Gargiulo, 2013, Silver-containing mesoporous bioactive glass with improved antibacterial properties, J. Mater. Sci. Mater. Med., 24, 2129, 10.1007/s10856-013-4968-4

Lin, 2013, In vitro hydroxyapatite-forming ability and antimicrobial properties of mesoporous bioactive glasses doped with Ti/Ag, J. Nanomater., 2013, 24, 10.1155/2013/786420

Zhu, 2011, Composition-structure-property relationships of the CaO-MxOy-SiO2-P2O5 (M = Zr, Mg, Sr) mesoporous bioactive glass (MBG) scaffolds, J. Mater. Chem., 21, 9208, 10.1039/c1jm10838g

Zhang, 2010, Effects of Cu2+ and Cu+ on the proliferation, differentiation and calcification of primary mouse osteoblasts in vitro, Chin. J. Inorg. Chem., 26, 2251

Wu, 2013, Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity, Biomaterials, 34, 422, 10.1016/j.biomaterials.2012.09.066

Shi, 2017, The synergistic effect of micro/nano-structured and Cu2+-doped hydroxyapatite particles to promote osteoblast viability and antibacterial activity, Biomed. Mater., 12, 10.1088/1748-605X/aa6c8d

Klevay, 2002, Copper in legumes may lower heart disease risk, Arch. Intern. Med., 162, 1780, 10.1001/archinte.162.15.1780

Hu, 2015, Copper stimulates proliferation of human endothelial cells under culture, J. Cell. Biochem., 69, 326, 10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A

Giavaresi, 2005, Blood vessel formation after soft-tissue implantation of hyaluronan-based hydrogel supplemented with copper ions, Biomaterials, 26, 3001, 10.1016/j.biomaterials.2004.08.027

Zhang, 2018, Effects of copper nanoparticles in porous TiO2 coatings on bacterial resistance and cytocompatibility of osteoblasts and endothelial cells, Mater. Sci. Eng. C, 82, 110, 10.1016/j.msec.2017.08.061

Zhang, 2020, A potential strategy for in-stent restenosis: inhibition of migration and proliferation of vascular smooth muscle cells by Cu ion, Mater. Sci. Eng. C, 115, 111090, 10.1016/j.msec.2020.111090

Thit, 2013, Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6): effects on proliferation, cell cycle progression and cell death, Toxicol. Vitro, 27, 1596, 10.1016/j.tiv.2012.12.013

Bondarenko, 2012, Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action, Environ. Pollut., 169, 81, 10.1016/j.envpol.2012.05.009

Sarell, 2010, Substoichiometric levels of Cu2+ ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-beta from alzheimer disease, J. Biol. Chem., 285, 41533, 10.1074/jbc.M110.171355

Fontecave, 1993, Iron: metabolism, toxicity and therapy, Biochimie, 75, 767, 10.1016/0300-9084(93)90126-D

Purnama, 2010, Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation, Acta Biomater., 6, 1800, 10.1016/j.actbio.2010.02.027

Goldhaber, 2003, Trace element risk assessment: essentiality vs. toxicity, Regul. Toxicol. Pharmacol., 38, 232, 10.1016/S0273-2300(02)00020-X

Peuster, 2001, A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal - results 6-18 months after implantation into New Zealand white rabbits, Heart, 86, 563, 10.1136/heart.86.5.563

Waksman, 2008, Short-term effects of biocorrodible iron stents in porcine coronary arteries, J. Intervent. Cardiol., 21, 15, 10.1111/j.1540-8183.2007.00319.x

Peuster, 2006, Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta, Biomaterials, 27, 4955, 10.1016/j.biomaterials.2006.05.029

Peuster, 2001, A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits, Heart, 86, 563, 10.1136/heart.86.5.563

Zhang, 2015, Degradable porous Fe-35wt.%Mn produced via powder sintering from NH4HCO3 porogen, Mater. Chem. Phys., 163, 394, 10.1016/j.matchemphys.2015.07.056

Cochis, 2016, The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii, Biomaterials, 80, 80, 10.1016/j.biomaterials.2015.11.042

Yuan, 2013, Effect of the La alloying addition on the antibacterial capability of 316L stainless steel, Mater. Sci. Eng. C, 33, 446, 10.1016/j.msec.2012.09.012

Liu, 2018, Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria, Corrosion Sci., 132, 46, 10.1016/j.corsci.2017.12.006

Verissimo, 2015, Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn, J. Biomed. Mater. Res. A, 103A, 3757, 10.1002/jbm.a.35517

Kang, 2016, Controlling the antibacterial activity of CuSn thin films by varying the contents of Sn, Appl. Surf. Sci., 389, 1012, 10.1016/j.apsusc.2016.08.041

Vasanthi, 2013, Influence of Sn doping level on antibacterial activity and certain physical properties of ZnO films deposited using a simplified spray pyrolysis technique, Superlattice. Microst., 55, 180, 10.1016/j.spmi.2012.12.011

Fielding, 2012, Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings, Acta Biomater., 8, 3144, 10.1016/j.actbio.2012.04.004

Leung, 2005, Chlorhexidine-releasing methacrylate dental composite materials, Biomaterials, 26, 7145, 10.1016/j.biomaterials.2005.05.014

Lin, 2008, Synthesis, characterization and antibacterial property of strontium half and totally substituted hydroxyapatite nanoparticles, J. Wuhan Univ. Technol.-Materials Sci. Ed., 23, 475, 10.1007/s11595-006-4475-2

Shorr, 1952, The usefulness of strontium as an adjuvant to calcium in the remineralization of the skeleton in man, Bull. Hosp. Jt. Dis., 13, 59

Guida, 2003, Preliminary work on the antibacterial effect of strontium in glass ionomer cements, J. Mater. Sci. Lett., 22, 1401, 10.1023/A:1025794927195

Looney, 2013, An evaluation of the processing conditions, structure, and properties (biaxial flexural strength and antibacterial efficacy) of sintered strontium-zinc-silicate glass ceramics, J. Biomater. Appl., 27, 937, 10.1177/0885328211430423

Ravi, 2012, Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties, J. Am. Ceram. Soc., 95, 2700, 10.1111/j.1551-2916.2012.05262.x

Dabsie, 2009, Does strontium play a role in the cariostatic activity of glass ionomer?, J. Dent., 37, 554, 10.1016/j.jdent.2009.03.013

Brauer, 2013, Bactericidal strontium-releasing injectable bone cements based on bioactive glasses, J. R. Soc. Interface, 10, 10.1098/rsif.2012.0647

Bornapour, 2015, Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure, Mater. Sci. Eng. C, 46, 16, 10.1016/j.msec.2014.10.008

Bornapour, 2013, Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite, Acta Biomater., 9, 5319, 10.1016/j.actbio.2012.07.045

Brar, 2012, Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials, J. Mech. Behav. Biomed. Mater., 7, 87, 10.1016/j.jmbbm.2011.07.018

Gu, 2012, In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal, Acta Biomater., 8, 2360, 10.1016/j.actbio.2012.02.018

Gu, 2009, In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 30, 484, 10.1016/j.biomaterials.2008.10.021

Shangguan, 2016, Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy, Mater. Sci. Eng. C, 69, 95, 10.1016/j.msec.2016.06.073

Shangguan, 2016, Investigation of the inner corrosion layer formed in pulse electrodeposition coating on Mg-Sr alloy and corresponding degradation behavior, J. Colloid Interface Sci., 481, 1, 10.1016/j.jcis.2016.07.032

Zhao, 2017, Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys, Mater. Sci. Eng. C, 70, 1081, 10.1016/j.msec.2016.04.012

Chen, 2020, In vitro and in vivo degradation behavior of Mg-2Sr-Ca and Mg-2Sr-Zn alloys, Bioact. Mater., 5, 275, 10.1016/j.bioactmat.2020.02.014

Almoudi, 2018, A systematic review on antibacterial activity of zinc against Streptococcus mutans, Saudi Dental J., 30, 283, 10.1016/j.sdentj.2018.06.003

Lynch, 2011, Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature, Int. Dent. J., 61, 46, 10.1111/j.1875-595X.2011.00049.x

Petrini, 2006, Antibacterial activity of zinc modified titanium oxide surface, Int. J. Artif. Organs, 29, 434, 10.1177/039139880602900414

Zhang, 2016, Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium, Ceram. Int., 42, 17095, 10.1016/j.ceramint.2016.07.220

Wang, 2017, Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO2/TiO2 coatings on Ti6Al4V implants, Mater. Sci. Eng. C, 75, 7, 10.1016/j.msec.2017.02.036

Zhang, 2016, Zn and Ag Co-doped anti-microbial TiO2 coatings on Ti by micro-arc oxidation, J. Mater. Sci. Technol., 32, 919, 10.1016/j.jmst.2016.01.008

Qi, 2017, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727, 792, 10.1016/j.jallcom.2017.08.142

Djurisic, 2015, Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts, Small, 11, 26, 10.1002/smll.201303947

Li, 2014, Influence of aqueous media on the ROS-mediated toxicity of ZnO nanoparticles toward green fluorescent protein-expressing Escherichia coli under UV-365 irradiation, Langmuir, 30, 2852, 10.1021/la5000028

Hu, 2012, Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium, Acta Biomater., 8, 904, 10.1016/j.actbio.2011.09.031

Bellanger, 2015, Stability and toxicity of ZnO quantum dots: interplay between nanoparticles and bacteria, J. Hazard Mater., 283, 110, 10.1016/j.jhazmat.2014.09.017

Kavitha, 2012, Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticle hybrids, Carbon, 50, 2994, 10.1016/j.carbon.2012.02.082

Zhang, 2008, ZnO nanofluids - a potential antibacterial agent, Prog. Nat. Sci., 18, 939, 10.1016/j.pnsc.2008.01.026

Yamaguchi, 1988, Zinc stimulation of bone protein synthesis in tissue culture: activation of aminoacyl-tRNA synthetase, Biochem. Pharmacol., 37, 4075, 10.1016/0006-2952(88)90098-6

Yamaguchi, 1987, Stimulatory effect of zinc on bone formation in tissue culture, Biochem. Pharmacol., 36, 4007, 10.1016/0006-2952(87)90471-0

Yamaguchi, 1986, Effect of essential trace metals on bone metabolism in weanling rats: comparison with zinc and other metals' actions, Res. Exp. Med., 186, 337, 10.1007/BF01852099

Yamaguchi, 1986, Action of zinc on bone metabolism in rats: increases in alkaline phosphatase activity and DNA content, Biochem. Pharmacol., 35, 773, 10.1016/0006-2952(86)90245-5

Yoo, 2004, Protection by pyruvate of rat retinal cells against zinc toxicity in vitro, and pressure-induced ischemia in vivo, Invest. Ophthalmol. Vis. Sci., 45, 1523, 10.1167/iovs.03-1315

Rodilla, 1998, Exposure of cultured human proximal tubular cells to cadmium, mercury, zinc and bismuth: toxicity and metallothionein induction, Chem. Biol. Interact., 115, 71, 10.1016/S0009-2797(98)00059-3

Kubasek, 2016, Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys, Mater. Sci. Eng. C, 58, 24, 10.1016/j.msec.2015.08.015

Ren, 2012, Preliminary study of anti-infective function of a copper-bearing stainless steel, Mater. Sci. Eng. C, 32, 1204, 10.1016/j.msec.2012.03.009

Huang, 2014, Antimicrobial behavior of Cu-bearing Zr-based bulk metallic glasses, Mater. Sci. Eng. C, 39, 325, 10.1016/j.msec.2014.03.017

Chu, 2014, Antimicrobial characteristics in Cu-containing Zr-based thin film metallic glass, Surf. Coating. Technol., 259, 87, 10.1016/j.surfcoat.2014.05.019

Zhang, 2019, Anti-bacterium influenced corrosion effect of antibacterial Ti-3Cu alloy in Staphylococcus aureus suspension for biomedical application, Mater. Sci. Eng. C, 94, 376, 10.1016/j.msec.2018.09.057

Bai, 2016, The anti-bacterial activity of titanium-copper sintered alloy against Porphyromonas gingivalis in vitro, Dent. Mater. J., 35, 659, 10.4012/dmj.2016-001

Wang, 2019, In vivo antibacterial property of Ti-Cu sintered alloy implant, Mater. Sci. Eng. C, 100, 38, 10.1016/j.msec.2019.02.084

Bekmurzayeva, 2018, Surface modification of stainless steel for biomedical applications: revisiting a century-old material, Mater. Sci. Eng. C, 93, 1073, 10.1016/j.msec.2018.08.049

Morihiro H, Katsuhisa M, Naoto O, Sadayuki N. Stainless stell excellent in antibacterial property and designing property. In: Nisshin Steel Co L, editor. Japenese Laid-Open Patent Publication. Japan1996.

Naoto O, Sadayuki N, Morihiro H. High strength martensitic stainless steel excellent in antibacterial characteristic. In: Nisshin Steel Co L, editor. Japenese Laid-Open Patent Publication. Japan1996.

Chen, 2004, Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel, Acta Metall. Sin., 40, 314

Yang, 2007, Antibacterial properties of an austenitic antibacterial stainless steel and its security for human body, J. Mater. Sci. Technol., 23, 333

Nan, 2007, Study on antibacterial properties of copper-containing antibacterial stainless steel, Acta Metall. Sin., 43, 1065

Nan, 2016, Effect of Cu addition on antibacterial property of type 200 stainless steel, Mater. Technol., 31, 44, 10.1179/1753555715Y.0000000025

Hong, 2005, Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel, Mater. Sci. Eng. A, 393, 213, 10.1016/j.msea.2004.10.032

Qiu, 2009, Effect of Cu on properties of antibacterial austenitic stainless steel, Iron Steel, 44, 81

Guan, 2020, The microstructure, antimicrobial properties, and corrosion resistance of Cu-bearing strip cast steel, Adv. Eng. Mater., 22, 10.1002/adem.201901265

Nan, 2008, Antibacterial mechanism of copper-bearing antibacterial stainless steel against E.coli, J. Mater. Sci. Technol., 24, 197

Nan, 2010, Cu ions dissolution from Cu-bearing antibacterial stainless steel, J. Mater. Sci. Technol., 26, 941, 10.1016/S1005-0302(10)60152-1

Li, 2015, Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water, J. Mater. Sci. Technol., 31, 243, 10.1016/j.jmst.2014.11.016

Liao, 2010, Effect of silver on antibacterial properties of stainless steel, Appl. Surf. Sci., 256, 3642, 10.1016/j.apsusc.2010.01.001

Sreekumari, 2003, Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion, ISIJ Int., 43, 1799, 10.2355/isijinternational.43.1799

Wang, 2016, Antimicrobial Cu-bearing stainless steel scaffolds, Mater. Sci. Eng. C, 68, 519, 10.1016/j.msec.2016.06.038

Zhuang, 2020, Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection, J. Biomed. Mater. Res. B Appl. Biomater., 108, 484, 10.1002/jbm.b.34405

Xi, 2017, Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel, Mater. Sci. Eng. C, 71, 1079, 10.1016/j.msec.2016.11.022

Chai, 2011, Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo, J. Mater. Sci. Mater. Med., 22, 2525, 10.1007/s10856-011-4427-z

Zhao, 2016, A novel ureteral stent material with antibacterial and reducing encrustation properties, Mater. Sci. Eng. C, 68, 221, 10.1016/j.msec.2016.04.103

Sun, 2016, An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel, Sci. Rep., 6

Bahmani-Oskooee, 2017, Cu-bearing, martensitic stainless steels for applications in biological environments, Mater. Des., 130, 442, 10.1016/j.matdes.2017.05.079

Liu, 2008, Study of a Cu-containing martensitic antibacterial stainless steel, Rare Met. Mater. Eng., 37, 1380

Wang, 2014, Effect of aging on antibacterial performance of Cu-bearing martensitic stainless steel, Mater. Technol., 29, 257, 10.1179/1753555714Y.0000000156

Wang, 2014, Effect of heat treatment on antibacterial performance of 3Cr13MoCu martensitic stainless steel, Acta Metall. Sin., 50, 1453

Wang, 2015, Effect of Cu content on antibacterial activity of 17-4 PH stainless steel, Mater. Technol., 30, B115

Nan, 2012, Antibacterial behavior of a Cu-bearing type 200 stainless steel, J. Mater. Sci. Technol., 28, 1067, 10.1016/S1005-0302(12)60174-1

Yang, 2016, Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel, Mater. Sci. Eng. C, 63, 376, 10.1016/j.msec.2016.03.014

Lou, 2016, Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater, Int. Biodeterior. Biodegrad., 110, 199, 10.1016/j.ibiod.2016.03.026

Liu, 2018, Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm, Int. Biodeterior. Biodegrad., 132, 132, 10.1016/j.ibiod.2018.03.002

Xiang, 2019, On the microstructure and mechanical properties of silver-bearing antibacterial CD4MCu duplex stainless steels: solid solution temperature, Mater. Express, 9, 1067, 10.1166/mex.2019.1600

Lin, 2011, The effect of copper on the properties of ferritic antibacterial stainless steel, Funct. Mater., 42, 549

Xie, 2011

Zhao, 2012, Effect of copper on the mechanical property and corrosion behavior of 19Cr-1.6Mo ferritic stainless steel, J. Iron Steel Res., 24, 45

Zhang, 2007

Xi, 2016, Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: a comprehensive cross-correlation study, Mater. Sci. Eng. A, 675, 243, 10.1016/j.msea.2016.08.058

Ran, 2013, Novel Cu-bearing economical 21Cr duplex stainless steels, Mater. Des., 46, 758, 10.1016/j.matdes.2012.11.017

Zhao, 2004

Luo, 2019, Study on properties of copper-containing austenitic antibacterial stainless steel, Mater. Technol., 34, 525, 10.1080/10667857.2019.1591726

Nan, 2008, Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy, J. Mater. Sci. Mater. Med., 19, 3057, 10.1007/s10856-008-3444-z

Ujiro, 2001, Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media, Corrosion Sci., 43, 2185, 10.1016/S0010-938X(01)00008-7

Jiang, 2016, Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel, Corrosion Sci., 113, 46, 10.1016/j.corsci.2016.10.003

Huang, 2018, Optimized antibacterial treatment for the Cu-bearing 420 stainless steel, Mater. Technol., 33, 699, 10.1080/10667857.2018.1497574

Jiang, 2016, Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel, Corrosion Sci., 113, 46, 10.1016/j.corsci.2016.10.003

Banas, 2000, The effect of copper on passivity and corrosion behaviour of ferritic and ferritic-austenitic stainless steels, Mater. Sci. Eng. A, 277, 183, 10.1016/S0921-5093(99)00530-4

Ren, 2011, Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel, Mater. Des., 32, 2374, 10.1016/j.matdes.2010.11.030

Nan, 2015, Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli, Mater. Sci. Eng. C, 48, 228, 10.1016/j.msec.2014.12.004

Xia, 2015, Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm, Biofouling, 31, 481, 10.1080/08927014.2015.1062089

Yuan, 2013, Antibacterial 316L stainless steel containing silver and niobium, Rare Met. Mater. Eng., 42, 2004, 10.1016/S1875-5372(14)60015-1

Cao, 2018, Cu-bearing stainless steel reduces cytotoxicity and crystals adhesion after ureteral epithelial cells exposing to calcium oxalate monohydrate, Sci. Rep., 8, 14094, 10.1038/s41598-018-32388-0

Ren, 2015, Osteogenic ability of Cu-bearing stainless steel, J. Biomed. Mater. Res. B Appl. Biomater., 103, 1433, 10.1002/jbm.b.33318

Li, 2015, Cu-bearing steel reduce inflammation after stent implantation, J. Mater. Sci. Mater. Med., 26, 114, 10.1007/s10856-015-5454-y

Zhao, 2018, Anti-fibrotic function of Cu-bearing stainless steel for reducing recurrence of urethral stricture after stent implantation, J. Biomed. Mater. Res. B, 106, 2019, 10.1002/jbm.b.34005

Zhao, 2017, In vitro study on infectious ureteral encrustation resistance of Cu-bearing stainless steel, J. Mater. Sci. Technol., 33, 1604, 10.1016/j.jmst.2017.03.025

Wang, 2017, Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process, Int. J. Nanomed., 12, 8443, 10.2147/IJN.S146866

Bai, 2015, Biocompatibility of antibacterial Ti-Cu sintered alloy: in vivo bone response, J. Mater. Sci. Mater. Med., 26, 265, 10.1007/s10856-015-5600-6

Zhang, 2016, Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application, Mater. Sci. Eng. C, 69, 1210, 10.1016/j.msec.2016.08.033

Guo, 2017, Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys, Mater. Sci. Eng. C, 72, 631, 10.1016/j.msec.2016.11.126

Krakhmalev, 2017, Functionalization of biomedical Ti6Al4V via in situ alloying by Cu during laser powder bed fusion manufacturing, Materials (Basel), 10, 10.3390/ma10101154

Liu, 2018, In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application, Dent. Mater. : Off. Publ. Acad. Dental Mater., 34, 1112, 10.1016/j.dental.2018.04.007

Ke, 2019, Characterization of a new Ti-13Nb-13Zr-10Cu alloy with enhanced antibacterial activity for biomedical applications, Mater. Lett., 253, 335, 10.1016/j.matlet.2019.07.008

Zhang, 2019, Additive manufacturing of ultrafine-grained high-strength titanium alloys, Nature, 576, 91, 10.1038/s41586-019-1783-1

Tao, 2020, Microstructure, mechanical properties and antibacterial properties of the microwave sintered porous Ti-3Cu alloys, J. Alloys Compd., 812, 152142, 10.1016/j.jallcom.2019.152142

Liu, 2016, Antibacterial abilities and biocompatibilities of Ti-Ag alloys with nanotubular coatings, Int. J. Nanomed., 11, 5743, 10.2147/IJN.S113674

Wang, 2014, In situ growth of self-organized Cu-containing nano-tubes and nano-pores on Ti90-xCu10Alx (x=0, 45) alloys by one-pot anodization and evaluation of their antimicrobial activity and cytotoxicity, Surf. Coating. Technol., 240, 167, 10.1016/j.surfcoat.2013.12.036

Liu, 2014, The antibacterial properties and biocompatibility of a Ti-Cu sintered alloy for biomedical application, Biomed. Mater., 9, 10.1088/1748-6041/9/2/025013

Liu, 2014, Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys, Mater. Sci. Eng. C, 35, 392, 10.1016/j.msec.2013.11.028

Ma, 2016, In vitro study on an antibacterial Ti-5Cu alloy for medical application, J. Mater. Sci. Mater. Med., 27, 91, 10.1007/s10856-016-5698-1

Bao, 2018, Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment, Bioact. Mater., 3, 28, 10.1016/j.bioactmat.2018.01.004

Moniri Javadhesari, 2020, Biocompatibility, osseointegration, antibacterial and mechanical properties of nanocrystalline Ti-Cu alloy as a new orthopedic material, Colloids Surf. B Biointerfaces, 189, 110889, 10.1016/j.colsurfb.2020.110889

Wu, 2020, Effect of Ti2Cu precipitation on antibacterial property of Ti-5Cu alloy, Mater. Sci. Eng. C, 108, 110433, 10.1016/j.msec.2019.110433

Fowler, 2019, Antibacterial investigation of titanium-copper alloys using luminescent Staphylococcus epidermidis in a direct contact test, Mater. Sci. Eng. C, 97, 707, 10.1016/j.msec.2018.12.050

Chen, 2017, Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys, Mater. Sci. Eng. C, 75, 906, 10.1016/j.msec.2017.02.142

Nakajo, 2014, Inhibitory effect of Ti-Ag alloy on artificial biofilm formation, Dent. Mater. J., 33, 389, 10.4012/dmj.2013-334

Ma, 2015, Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy, J. Mater. Sci. Technol., 31, 723, 10.1016/j.jmst.2015.04.002

Ma, 2015, Study on antibacterial activity and cytocompatibility of Ti-6Al-4V-5Cu alloy, Mater. Technol., 30, B80, 10.1179/1753555714Y.0000000237

Peng, 2018, Effect of annealing temperature on mechanical and antibacterial properties of Cu-bearing titanium alloy and its preliminary study of antibacterial mechanism, Mater. Sci. Eng. C, 93, 495, 10.1016/j.msec.2018.08.018

Ren, 2014, Antibacterial properties of Ti-6Al-4V-xCu alloys, J. Mater. Sci. Technol., 30, 699, 10.1016/j.jmst.2013.12.014

Macpherson, 2017, Antibacterial titanium produced using selective laser melting, JOM (J. Occup. Med.), 69, 2719

Ou, 2017, A promising of alloying modified beta-type Titanium-Niobium implant for biomedical applications: microstructural characteristics, in vitro biocompatibility and antibacterial performance, J. Alloys Compd., 697, 231, 10.1016/j.jallcom.2016.12.120

Du, 2017, Antibacterial properties and corrosion resistance of the newly developed biomaterial, Ti-12Nb-1Ag Alloy, Metals, 7, 10.3390/met7120566

Takahashi, 2002, Mechanical properties and microstructures of dental cast Ti-Ag and Ti-Cu alloys, Dent. Mater. J., 21, 270, 10.4012/dmj.21.270

Kikuchi, 2003, Mechanical properties and microstructures of cast Ti-Cu alloys, Dent. Mater., 19, 174, 10.1016/S0109-5641(02)00027-1

Peng, 2019, Optimization of annealing treatment and comprehensive properties of Cu-containing Ti6Al4V-xCu alloys, J. Mater. Sci. Technol., 35, 2121, 10.1016/j.jmst.2019.05.020

Kikuchi, 2003, Mechanical properties and microstructures of cast Ti-Cu alloys, Dent. Mater., 19, 174, 10.1016/S0109-5641(02)00027-1

Alshammari, 2019, Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material, J. Mech. Behav. Biomed., 95, 232, 10.1016/j.jmbbm.2019.04.004

Wang, 2019, Optimization of mechanical property, antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant, J. Mater. Sci. Technol., 35, 2336, 10.1016/j.jmst.2019.03.044

Mukhopadhyay, 2015, Effect of nano Ti2Cu precipitates in Ti6Al4V2.5Cu alloy, Mater. Today: Proc., 2, 3580, 10.1016/j.matpr.2015.07.099

Takahashi, 2016, Mechanical properties and microstructures of dental cast Ti-6Nb-4Cu, Ti-18Nb-2Cu, and Ti-24Nb-1Cu alloys, Dent. Mater. J., 35, 564, 10.4012/dmj.2015-354

Zhang, 2011

Aoki, 2004, Mechanical properties of cast Ti-6Al-4V-xCu alloys, J. Oral Rehabil., 31, 1109, 10.1111/j.1365-2842.2004.01347.x

Jovanović, 2006, The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy, Mater. Des., 27, 192, 10.1016/j.matdes.2004.10.017

Zhang, 2016, Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys, Mater. Sci. Eng. C, 69, 760, 10.1016/j.msec.2016.07.051

Kikuchi, 2006, Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys, Dent. Mater., 22, 641, 10.1016/j.dental.2005.05.015

Cai, 2021, A novel biomedical titanium alloy with high antibacterial property and low elastic modulus, J. Mater. Sci. Technol., 81, 13, 10.1016/j.jmst.2021.01.015

Kikuchi, 2003, Grindability of cast Ti-Cu alloys, Dent. Mater., 19, 375, 10.1016/S0109-5641(02)00080-5

Koike, 2005, Corrosion behavior of cast Ti-6Al-4V alloyed with Cu, J. Biomed. Mater. Res., 73, 368, 10.1002/jbm.b.30225

Pina, 2016, Microstructural, electrochemical and tribo-electrochemical characterisation of titanium-copper biomedical alloys, Corrosion Sci., 109, 115, 10.1016/j.corsci.2016.02.014

Wang, 2015, Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy, Mater. Sci. Eng. C, 57, 123, 10.1016/j.msec.2015.07.046

Akbarpour, 2017, Wear performance of novel nanostructured Ti-Cu intermetallic alloy as a potential material for biomedical applications, J. Alloys Compd., 699, 882, 10.1016/j.jallcom.2017.01.020

Ottria, 2018, Mechanical, chemical and biological aspects of titanium and titanium alloys in implant dentistry, J. Biol. Regul. Homeost. Agents, 32, 81

Osório, 2010, Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for medical applications, Electrochim. Acta, 55, 759, 10.1016/j.electacta.2009.09.016

Zhang, 2009, Effect of Ag on the corrosion behavior of Ti–Ag alloys in artificial saliva solutions, Dent. Mater., 25, 672, 10.1016/j.dental.2008.10.016

Takahashi, 2006, Electrochemical behavior of cast Ti-Ag alloys, Dent. Mater., 25, 516, 10.4012/dmj.25.516

Takada, 2001, Microstructure and corrosion behavior of binary titanium alloys with beta-stabilizing elements, Dent. Mater., 20, 34, 10.4012/dmj.20.34

Wei, 2016, Correlation of ageing precipitates with the corrosion behaviour of Cu-4wt.% Ti alloys in 3.5wt.% NaCl solution, Corrosion Sci., 111, 382, 10.1016/j.corsci.2016.05.029

Ramezanzadeh, 2011, Studying the effects of micro and nano sized ZnO particles on the corrosion resistance and deterioration behavior of an epoxy-polyamide coating on hot-dip galvanized steel, Prog. Org. Coating, 71, 314, 10.1016/j.porgcoat.2011.03.026

Seah, 1995, A comparison between the coorrosion behaviour of sintered and unsintered porous titanium, Corrosion Sci., 37, 1333, 10.1016/0010-938X(95)00033-G

Ma, 2016, In vitro study on an antibacterial Ti-5Cu alloy for medical application, J. Mater. Sci. Mater. Med., 27, 10.1007/s10856-016-5698-1

Rolla, 1990, Critical evaluation of the composition and use of topical fluorides, with emphasis on the role of calcium fluoride in caries inhibition, Dent Res, 69, 780, 10.1177/00220345900690S150

Stookey, 1990, Critical evaluation of the composition and use of topical fluorides, Dent Res, 69, 805, 10.1177/00220345900690S154

Reclaru, 1998, Effects of fluorides on titanium and other dental alloys in dentistry, 19, 85

Nakagawa, 1999, Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use, J. Dent. Res., 78, 1568, 10.1177/00220345990780091201

Shim, 2005, Corrosion Resistance of titanium-silver alloys in an artificial saliva containing fluoride ions, J. Biomed. Mater. Res. B Appl. Biomater., 73B, 252, 10.1002/jbm.b.30206

Mutlu, 2014, Electrochemical Corrosion Behavior of TiN-coated biomedical Ti-Cu alloy foam in fluoride containing artificial saliva, Metall. Mater. Trans., 45, 3640, 10.1007/s11661-014-2264-7

Takahashi, 2011, Corrosion behavior of Ti-Ag alloys used in dentistry in lactic acid solution, Met. Mater. Int., 17, 175, 10.1007/s12540-011-0224-y

Zhang, 2015, Influence of Cu content on the cell biocompatibility of Ti-Cu sintered alloys, Mater. Sci. Eng. C, 46, 148, 10.1016/j.msec.2014.10.021

Li, 2017, Effects of different copper contents on the adhesion and migration of osteoblasts, Chin. J. Pract. Stomatol., 10, 354

Tang, 2017, Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications, J. Mech. Behav. Biomed. Mater., 72, 182, 10.1016/j.jmbbm.2017.05.013

Xie, 2018, Fabrication and properties of porous Zn-Ag alloy scaffolds as biodegradable materials, Mater. Chem. Phys., 219, 433, 10.1016/j.matchemphys.2018.08.023

Yue, 2020, In vitro cytocompatibility, hemocompatibility and antibacterial properties of biodegradable Zn-Cu-Fe alloys for cardiovascular stents applications, Mater. Sci. Eng. C, 113, 111007, 10.1016/j.msec.2020.111007

Xiao, 2018, Indirectly extruded biodegradable Zn-0.05wt%Mg alloy with improved strength and ductility: in vitro and in vivo studies, J. Mater. Sci. Technol., 34, 1618, 10.1016/j.jmst.2018.01.006

Lin, 2020, A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications, Acta Biomater., 106, 410, 10.1016/j.actbio.2020.02.017

Zhang, 2021, Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application, Bioact. Mater., 6, 975, 10.1016/j.bioactmat.2020.09.019

Bakhsheshi-Rad, 2017, Fabrication of biodegradable Zn-Al-Mg alloy: mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities, Mater. Sci. Eng. C, 73, 215, 10.1016/j.msec.2016.11.138

Shi, 2019, Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8Mn alloy, Mater. Sci. Eng. C, 99, 969, 10.1016/j.msec.2019.02.044

Niu, 2016, Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application, Mater. Sci. Eng. C, 69, 407, 10.1016/j.msec.2016.06.082

Li, 2018, Mechanical characteristics, in vitro degradation, cytotoxicity, and antibacterial evaluation of Zn-4.0Ag alloy as a biodegradable material, Int. J. Mol. Sci., 19

Katarivas Levy, 2017, The prospects of zinc as a structural material for biodegradable implants—a review paper, Metals., 7, 402, 10.3390/met7100402

Sikora-Jasinska, 2017, Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications, Mater. Sci. Eng. C, 77, 1170, 10.1016/j.msec.2017.04.023

Vojtěch, 2011, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, Acta Biomater., 7, 3515, 10.1016/j.actbio.2011.05.008

Kubásek, 2016, Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys, Mater. Sci. Eng. C, 58, 24, 10.1016/j.msec.2015.08.015

Gong, 2015, In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy, J. Biomed. Mater. Res. B Appl. Biomater., 103, 1632, 10.1002/jbm.b.33341

Mostaed, 2016, Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation, J. Mech. Behav. Biomed. Mater., 60, 581, 10.1016/j.jmbbm.2016.03.018

Li, 2015, Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr, Sci. Rep., 5, 10719, 10.1038/srep10719

Ma, 2000, Unidirectional solidification of Zn-rich Zn-Cu peritectic alloys—I. Microstructure selection, Acta Mater., 48, 419, 10.1016/S1359-6454(99)00365-1

Yao, 2014, Effects of Mg on microstructure and corrosion properties of Zn-Mg alloy, J. Alloys Compd., 602, 101, 10.1016/j.jallcom.2014.03.025

Liu, 2016, Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application, Mater. Des., 94, 95, 10.1016/j.matdes.2015.12.128

Sun, 2017, Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys, Mater. Sci. Eng. A, 701, 129, 10.1016/j.msea.2017.06.037

Kabir, 2021, Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: biomechanical and biocorrosion perspectives, Bioact. Mater., 6, 836, 10.1016/j.bioactmat.2020.09.013

Pachla, 2021, Structural and mechanical aspects of hypoeutectic Zn-Mg binary alloys for biodegradable vascular stent applications, Bioact. Mater., 6, 26, 10.1016/j.bioactmat.2020.07.004

An, 2017, Promotive effect of zinc ions on the vitality, migration, and osteogenic differentiation of human dental pulp cells, Biol. Trace Elem. Res., 175, 112, 10.1007/s12011-016-0763-7

Qiao, 2014, Stimulation of bone growth following zinc incorporation into biomaterials, Biomaterials, 35, 6882, 10.1016/j.biomaterials.2014.04.101

Ma, 2015, Endothelial cellular responses to biodegradable metal zinc, ACS Biomater. Sci. Eng., 1, 1174, 10.1021/acsbiomaterials.5b00319

Wang, 2015, Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials, Acta Biomater., 21, 237, 10.1016/j.actbio.2015.04.011

Bowen, 2015, Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents, Mater. Sci. Eng. C, 56, 467, 10.1016/j.msec.2015.07.022

Yang, 2017, Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model, Biomaterials, 145, 92, 10.1016/j.biomaterials.2017.08.022

Staiger, 2006, Magnesium and its alloys as orthopedic biomaterials: a review, Biomaterials, 27, 1728, 10.1016/j.biomaterials.2005.10.003

Sezer, 2018, Review of magnesium-based biomaterials and their applications, J. Magnes. Alloys, 6, 23, 10.1016/j.jma.2018.02.003

Robinson, 2010, In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, Acta Biomater., 6, 1869, 10.1016/j.actbio.2009.10.007

Ren, 2011, Effect of surface coating on antibacterial behavior of magnesium based metals, Mater. Lett., 65, 3509, 10.1016/j.matlet.2011.07.109

Lock, 2014, Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications, J. Biomed. Mater. Res., 102A, 781, 10.1002/jbm.a.34741

Nan, 2015, Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli, Mater. Sci. Eng. C, 48, 228, 10.1016/j.msec.2014.12.004

Witte, 2006, In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials, 27, 1013, 10.1016/j.biomaterials.2005.07.037

Hou, 2016, Reduced antibacterial property of metallic magnesium in vivo, Biomed. Mater., 12, 10.1088/1748-605X/12/1/015010

Li, 2014, Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection, Antimicrob. Agents Chemother., 58, 7586, 10.1128/AAC.03936-14

Rahim, 2015, Alkalization is responsible for antibacterial effects of corroding magnesium, J. Biomed. Mater. Res. A, 103, 3526, 10.1002/jbm.a.35503

Chen, 2018, Effect of copper content on the corrosion behaviors and antibacterial properties of binary Mg-Cu alloys, Mater. Technol., 33, 145, 10.1080/10667857.2018.1432170

He, 2015, Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial properties, J. Mater. Chem. B, 3, 6676, 10.1039/C5TB01319D

Qin, 2015, Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy, Biomaterials, 53, 211, 10.1016/j.biomaterials.2015.02.096

Gao, 2019, Improving in vitro and in vivo antibacterial functionality of Mg alloys through micro-alloying with Sr and Ga, Mater. Sci. Eng. C, 104, 109926, 10.1016/j.msec.2019.109926

Liu, 2016

Liu, 2016, Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects, Sci. Rep., 6

Zhang, 2019, Antimicrobial bioresorbable Mg-Zn-Ca alloy for bone repair in a comparison study with Mg-Zn-Sr alloy and pure Mg, ACS Biomater. Sci. Eng., 6, 517, 10.1021/acsbiomaterials.9b00903

Liu, 2017, Influence of the microstructure and silver content on degradation, cytocompatibility, and antibacterial properties of magnesium-silver alloys in vitro, Oxid Med Cell Longev, 2017, 8091265, 10.1155/2017/8091265

Brooks, 2018, Magnesium alloy AZ91 exhibits antimicrobial properties in vitro but not in vivo, J. Biomed. Mater. Res. B, 106, 221, 10.1002/jbm.b.33839

Yan, 2018, Corrosion and biological performance of biodegradable magnesium alloys mediated by low copper addition and processing, Mater. Sci. Eng. C, 93, 565, 10.1016/j.msec.2018.08.013

Wang, 2018, Antibacterial properties of new magnesium alloy implanted in vivo, Res. Tissue Eng. China, 22, 3451

Razzaghi, 2019, In vitro degradation, antibacterial activity and cytotoxicity of Mg-3Zn-xAg nanocomposites synthesized by mechanical alloying for implant applications, J. Mater. Eng. Perform., 28, 1441, 10.1007/s11665-019-03923-5

Li, 2016

Qu, 2017

Bakhsheshi-Rad, 2019, Synthesis and in-vitro characterization of biodegradable porous magnesium-based scaffolds containing silver for bone tissue engineering, Trans. Nonferrous Metals Soc. China, 29, 984, 10.1016/S1003-6326(19)65007-7

Cai, 2012, Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys, Mater. Sci. Eng. C, 32, 2570, 10.1016/j.msec.2012.07.042

Tie, 2014, In vitro mechanical and corrosion properties of biodegradable Mg-Ag alloys, Mater. Corrosion-Werkstoffe Und Korrosion, 65, 569, 10.1002/maco.201206903

Clark, 1965, Transmission electron microscopy study of age hardening in a Mg-5 wt.% Zn alloy, Acta Metall., 13, 1281, 10.1016/0001-6160(65)90039-8

Buha, 2008, Reduced temperature (22-100°C) ageing of an Mg-Zn alloy, Mater. Sci. Eng. A, 492, 11, 10.1016/j.msea.2008.02.038

Shi, 2006, Corrosion resistance of anodised single-phase Mg alloys, Surf. Coating. Technol., 201, 492, 10.1016/j.surfcoat.2005.11.081

Liu, 2010, Effects of heat treatment on corrosion behaviors of Mg-3Zn magnesium alloy, Trans. Nonferrous Metals Soc. China, 20, 1345, 10.1016/S1003-6326(09)60302-2

Yin, 2013, Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys, J. Mater. Sci. Mater. Med., 24, 1365, 10.1007/s10856-013-4856-y

Berglund, 2012, Synthesis and characterization of Mg-Ca-Sr alloys for biodegradable orthopedic implant applications, J. Biomed. Mater. Res. B, 100, 1524, 10.1002/jbm.b.32721

Zhen, 2015, Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys, Mater. Sci. Eng. C, 46, 202, 10.1016/j.msec.2014.08.038

Fischer, 2011, Reprint of: improved cytotoxicity testing of magnesium materials, Mater. Sci. Eng., B, 176, 1773, 10.1016/j.mseb.2011.06.002

Sun, 2019, Translational status of biomedical Mg devices in China, Bioact. Mater., 4, 358, 10.1016/j.bioactmat.2019.11.001

Rahim, 2016, Susceptibility of metallic magnesium implants to bacterial biofilm infections, J. Biomed. Mater. Res. A, 104, 1489, 10.1002/jbm.a.35680

Wang, 2014, Study on antibacterial performance of Cu-bearing cobalt-based alloy, Mater. Lett., 129, 88, 10.1016/j.matlet.2014.05.020

Jiang, 2019, A strong, wear- and corrosion-resistant, and antibacterial Co-30 at.% Cr-5 at.% Ag ternary alloy for medical implants, Mater. Des., 184, 108190, 10.1016/j.matdes.2019.108190

Hosman, 2011, Influence of Co-Cr particles and Co-Cr ions on the growth of staphylococcal biofilms, Int. J. Artif. Organs, 34, 759, 10.5301/ijao.5000031

Ren, 2016, A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties, Mater. Sci. Eng. C, 67, 461, 10.1016/j.msec.2016.05.069

Lu, 2018, Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting, J. Mech. Behav. Biomed. Mater., 81, 130, 10.1016/j.jmbbm.2018.02.026

Lu, 2016, Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition, Mater. Sci. Eng. C, 63, 37, 10.1016/j.msec.2016.02.057

Wang, 2020, Novel CoCrWNi alloys with Cu addition: microstructure, mechanical properties, corrosion properties and biocompatibility, J. Alloys Compd., 824, 153924, 10.1016/j.jallcom.2020.153924

Wang, 2020, Effect of Cu on Martensite Transformation of CoCrMo alloy for biomedical application, J. Mater. Sci. Technol., 52, 127, 10.1016/j.jmst.2020.04.012

Barceloux, 1999, Cobalt, J. Toxicol. Clin. Toxicol., 37, 201, 10.1081/CLT-100102420

Paustenbach, 2013, A review of the health hazards posed by cobalt, Crit. Rev. Toxicol., 43, 316, 10.3109/10408444.2013.779633

Tvermoes, 2015, Review of cobalt toxicokinetics following oral dosing: implications for health risk assessments and metal-on-metal hip implant patients, Crit. Rev. Toxicol., 45, 367, 10.3109/10408444.2014.985818

Pettersson, 2012, Inflammatory response by Ti, Co-Cr-Mo in cultures of human macrophages, Dent. Mater., 28, e32, 10.1016/j.dental.2012.07.079

Grass, 2011, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol., 77, 1541, 10.1128/AEM.02766-10

Wilks, 2005, The survival of Escherichia coli O157 on a range of metal surfaces, Int. J. Food Microbiol., 105, 445, 10.1016/j.ijfoodmicro.2005.04.021

Michels, 2005, Copper alloys for human infectious disease control

Mehtar, 2008, The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study, J. Hosp. Infect., 68, 45, 10.1016/j.jhin.2007.10.009

Yousuf, 2016, Understanding the antimicrobial activity behind thin- and thick-rolled copper plates, Appl. Microbiol. Biotechnol., 100, 5569, 10.1007/s00253-016-7361-7

Marais, 2010, Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility, J. Hosp. Infect., 74, 80, 10.1016/j.jhin.2009.07.010

Mikolay, 2010, Survival of bacteria on metallic copper surfaces in a hospital trial, Appl. Microbiol. Biotechnol., 87, 1875, 10.1007/s00253-010-2640-1

Palza, 2018, In situ antimicrobial behavior of materials with copper-based additives in a hospital environment, Int. J. Antimicrob. Agents, 51, 912, 10.1016/j.ijantimicag.2018.02.007

Borkow, 2009, Copper, an ancient remedy returning to fight microbial, fungal and viral infections, Curr. Chem. Biol., 3, 272

Santo, 2010, Isolation and characterization of bacteria resistant to metallic copper surfaces, Appl. Environ. Microbiol., 76, 1341, 10.1128/AEM.01952-09

Demetriou, 2010, Amorphous metals for hard-tissue prosthesis, JOM, 62, 83, 10.1007/s11837-010-0038-2

Buzzi, 2006, Cytotoxicity of Zr-based bulk metallic glasses, Intermetallics, 14, 729, 10.1016/j.intermet.2005.11.003

Sun, 2015, In vitro and in vivo biocompatibility of an Ag-bearing Zr-based bulk metallic glass for potential medical use, J. Non-Cryst. Solids, 419, 82, 10.1016/j.jnoncrysol.2015.03.039

Horton, 2011, Biomedical potential of a zirconium-based bulk metallic glass, MRS Proc., 754

Lin, 2012, Antibacterial effect of metallic glasses, Chin. Sci. Bull., 57, 1069, 10.1007/s11434-012-4997-2

Latuch, 2012

Lesz, 2013, Influence of copper addition on glass forming ability, thermal stability, structure and magnetic properties of Fe-Co-Based BMGs, Solid State Phenom., 203–204, 296, 10.4028/www.scientific.net/SSP.203-204.296

Chu, 2012, Thin film metallic glasses: unique properties and potential applications, Thin Solid Films, 520, 5097, 10.1016/j.tsf.2012.03.092

Chiang, 2010, Surface antimicrobial effects of Zr61Al7.5Ni10Cu17.5Si4 thin film metallic glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, acinetobacter baumannii and Candida albicans, Fooyin Journal of Health Sciences, 2, 12, 10.1016/S1877-8607(10)60008-2

Chu, 2014, Fabrication and characterizations of thin film metallic glasses: antibacterial property and durability study for medical application, Thin Solid Films, 561, 102, 10.1016/j.tsf.2013.08.111

Chen, 2014, Antimicrobial properties of Zr-Cu-Al-Ag thin film metallic glass, Thin Solid Films, 561, 98, 10.1016/j.tsf.2013.08.028

Subramanian, 2015, Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels, Int. J. Nanomed., 10, 17, 10.2147/IJN.S79977

Liu, 2016, Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses, Sci. Rep., 6

Tsai, 2012, Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating, Intermetallics, 31, 127, 10.1016/j.intermet.2012.06.014

Apreutesei, 2014, Microstructural, thermal and mechanical behavior of co-sputtered binary Zr-Cu thin film metallic glasses, Thin Solid Films, 561, 53, 10.1016/j.tsf.2013.05.177

Etiemble, 2017, Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications, J. Alloys Compd., 707, 155, 10.1016/j.jallcom.2016.12.259

Zhang, 2013, Effects of antibacterial heat treatment on cold workability of SUSXM7 Cu-bearing stainless steel, Hot Work. Technol., 42, 181

Li, 2019, Dose-response relationships between copper and its biocompatibility/antibacterial activities, J. Trace Elem. Med. Biol., 55, 127, 10.1016/j.jtemb.2019.06.015

Xiu, 2011, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions, Environ. Sci. Technol., 45, 9003, 10.1021/es201918f

Quaranta, 2011, Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces, Appl. Environ. Microbiol., 77, 416, 10.1128/AEM.01704-10

Padan, 2005, Alkaline pH homeostasis in bacteria: new insights, Biochim. Biophys. Acta Biomembr., 1717, 67, 10.1016/j.bbamem.2005.09.010

Burne, 2000, Alkali production by oral bacteria and protection against dental caries, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett., 193, 1, 10.1111/j.1574-6968.2000.tb09393.x

Dong, 2010, Investigation of Mg(OH)2 nanoparticles as an antibacterial agent, J. Nanoparticle Res., 12, 2101, 10.1007/s11051-009-9769-9

Jin, 2011, Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens, J. Nanoparticle Res., 13, 6877, 10.1007/s11051-011-0595-5

Chernousova, 2013, Silver as antibacterial agent: ion, nanoparticle, and metal, Angew. Chem. Int. Ed., 52, 1636, 10.1002/anie.201205923

Paladini, 2015, Metal-based antibacterial substrates for biomedical applications, Biomacromolecules, 16, 1873, 10.1021/acs.biomac.5b00773

Faria, 2014, Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets, Colloids Surf. B Biointerfaces, 113, 115, 10.1016/j.colsurfb.2013.08.006

Li, 2014, Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer, Sci. Rep., 4, 4359, 10.1038/srep04359

Li, 2014, Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application, Appl. Phys. Lett., 104, 10.1063/1.4885401

Wang, 2017, Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species, Biomaterials, 124, 25, 10.1016/j.biomaterials.2017.01.028

Reece, 2009, Proton-coupled electron transfer in biology: results from synergistic studies in natural and model systems, Annu. Rev. Biochem., 78, 673, 10.1146/annurev.biochem.78.080207.092132

Lovley, 1996, Humic substances as electron acceptors for microbial respiration, Nature, 382, 445, 10.1038/382445a0

Hernandez, 2001, Extracellular electron transfer, Cellular and Molecular Life Sciences CMLS, 58, 1562, 10.1007/PL00000796

Lemire, 2013, Antimicrobial activity of metals: mechanisms, molecular targets and applications, Nat. Rev. Microbiol., 11, 371, 10.1038/nrmicro3028

Zhang, 2020, Contact killing of Cu-bearing stainless steel based on charge transfer caused by the microdomain potential difference, ACS Appl. Mater. Interfaces, 12, 361, 10.1021/acsami.9b19596

Qiu, 2009

van der Mei, 2008, Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow, Biotechnol. Bioeng., 100, 810, 10.1002/bit.21820

Qi LF, Xu ZR, Jiang X, Hu CH, Zou XF. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr. Res. 339:2693-27002004.

Gottenbos, 2001, Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria, J. Antimicrob. Chemother., 48, 7, 10.1093/jac/48.1.7

Murata, 2007, Permanent, non-leaching antibacterial surfaces—2: how high density cationic surfaces kill bacterial cells, Biomaterials, 28, 4870, 10.1016/j.biomaterials.2007.06.012

Strahl, 2010, Membrane potential is important for bacterial cell division, Proc. Natl. Acad. Sci. U.S.A., 107, 12281, 10.1073/pnas.1005485107

Zhang, 2008, Membrane lipid homeostasis in bacteria, Nat. Rev. Microbiol., 6, 222, 10.1038/nrmicro1839

Santo, 2011, Bacterial killing by dry metallic copper surfaces, Appl. Environ. Microbiol., 77, 794, 10.1128/AEM.01599-10