Antibacterial effect on mature biofilms of oral streptococci and antioxidant activity of 3β,6β,16β-trihydroxylup-20(29)-ene from Combretum leprosum

Springer Science and Business Media LLC - Tập 26 - Trang 3296-3306 - 2017
Francisco Flávio Vasconcelos Evaristo1,2, Mayron Alves de Vasconcelos1,3, Francisco Vassiliepe Sousa Arruda1,2, Anna Luísa Pereira1, Alexandre Lopes Andrade1, Daniel Barroso de Alencar4, Mariana Ferreira do Nascimento5, Alexandre Holanda Sampaio4, Silvana Saker-Sampaio4, Paulo Nogueira Bandeira5, Hélcio Silva dos Santos5, Edson Holanda Teixeira1
1Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, Brazil
2Curso de Odontologia, Centro Universitário INTA, Sobral, Brazil
3Departamento de Ciências Biológicas, Universidade do Estado do Rio Grande do Norte, Mossoró, Brazil
4Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, Brazil
5Centro de Ciências Exatas e Tecnologia, Universidade Estadual Vale do Acaraú, Sobral, Brazil

Tóm tắt

This study aimed to evaluate the antioxidant effect and antibacterial activity of the triterpene 3β,6β,16β-trihydroxylup-20(29)-ene (CLF1) isolated from Combretum leprosum leaves on mature biofilms from Streptococcus mutans and S. parasanguinis, both involved in dental caries. In order to determine the bacterial death time curve promoted by CLF1, minimum inhibitory concentration and minimum bactericidal concentration were also assessed. The susceptibility of mature biofilms from both species to CLF1 was investigated through total biomass quantification and enumeration of biofilm-entrapped colony forming units. Moreover, the effect of CLF1 on S. mutans biofilm architecture was investigated by scanning electron microscopy. Additionally, the antioxidant properties of CLF1 were assessed by scavenging of 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) free radical, ferrous ion chelating assay, ferric-reducing antioxidant power, and β-carotene bleaching assay. The minimum inhibitory concentration and minimum bactericidal concentration of CLF1 for both species were 3.9 and 15.6 μg/mL, respectively, and no bacterial growth was detected at 24 h treatment. Moreover, CLF1 reduced the biomass and viability of biofilms from both species. Electron micrographs of S. mutans biofilms confirmed such results and showed damages on bacterial surface. Regarding antioxidant activity, CLF1 showed efficient antioxidant ability in scavenging DPPH radical and inhibiting β-carotene oxidation. In summary, CLF1 should be considered as an effective molecule against infections caused by S. mutans and S. parasanguinis biofilms, as well as a natural antioxidant.

Tài liệu tham khảo

Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6(6):431–440 Aderogba MA, Kgatle DT, McGraw LJ, Eloff JN (2012) Isolation of antioxidant constituents from Combretum apiculatum subsp. apiculatum. S Afr J Bot 79:125–131 Agarwal P, Nagesh L (2011) Comparative evaluation of efficacy of 0.2% chlorhexidine, listerine and tulsi extract mouth rinses on salivary streptococcus mutans count of high school children--RCT. Contemp Clin Trials 32(6):802–808 Ahn SJ, Wen ZT, Burne RA (2006) Multilevel control of competence development and stress tolerance in streptococcus mutans UA159. Infect Immun 74(3):1631–1642 Aimutis WR (2012) Lactose cariogenicity with an emphasis on childhood dental caries. Int Dairy Jo 22(2):152–158 Almaz ME, Sonmez IS, Okte Z, Oba AA (2017) Efficacy of a sugar-free herbal lollipop for reducing salivary streptococcus mutans levels: a randomized controlled trial. Clin Oral Investig 21(3):839–845 Asokan S, Rathan J, Muthu MS, Rathna PV, Emmadi P, Raghuraman, Chamundeswari (2008) Effect of oil pulling on streptococcus mutans count in plaque and saliva using dentocult SM Strip mutans test: a randomized, controlled, triple-blind study. J Indian Soc Pedod Prev Dent 26(1):12–17 Bernard FX, Sablé S, Cameron B, Provost J, Desnottes JF, Crouzet J, Blanche F (1997) Glycosylated flavones as selective inhibitors of topoisomerase IV. Antimicrob Agents Chemother 41(5):992–998 Chew YL, Lim YY, Omar M, Khoo KS (2008) Antioxidant activity of three edible seaweeds from two areas in South East Asia. Lwt-Food Sci Technol 41(6):1067–1072 Closa D, Folch-Puy E (2004) Oxygen free radicals and the systemic inflammatory response. IUBMB Life 56(4):185–191 Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322 Costerton JW, Wilson M (2004) Introducing biofilms. Biofilms 1:1–4 Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356 Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867 do Nascimento PG, Lemos TL, Bizerra AM, Arriaga AM, Ferreira DA, Santiago GM, Braz-Filho R, Costa JG (2014) Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules 19(1):1317–1327 do Nascimento-Neto LG, Evaristo FF, Alves MF, Albuquerque MR, dos Santos HS, Bandeira PN, Arruda FV, Teixeira EH (2015) Effect of the triterpene 3beta, 6beta, 16beta-trihydroxylup-20(29)-ene isolated from the leaves of combretum leprosum mart. on cutaneous wounds in mice. J Ethnopharmacol 171:116–120 Duan X, Zhang W, Li X, Wang B (2006) Evaluation of antioxidant property of extract and fractions obtained from a red alga, polysiphonia urceolata. Food Chem 95(1):37–43 Evaristo FF, Albuquerque MR, dos Santos HS, Bandeira PN, Avila Fdo N, da Silva BR, Vasconcelos AA, Rabelo Ede M, Nascimento-Neto LG, Arruda FV, Vasconcelos MA, Carneiro VA, Cavada BS, Teixeira EH (2014) Antimicrobial effect of the triterpene 3beta,6beta,16beta-trihydroxylup-20(29)-ene on planktonic cells and biofilms from gram positive and gram negative bacteria. Biomed Res Int 2014:729358 Facundo VA, Andrade CHS, Silveira ER, Braz-Filho R, Hufford CD (1993) Triterpenes and flavonoids from combretum leprosum. Phytochemistry 32(2):411–415 Fontanay S, Grare M, Mayer J, Finance C, Duval RE (2008) Ursolic, oleanolic and betulinic acids: antibacterial spectra and selectivity indexes. J Ethnopharmacol 120(2):272–276 Forssten SD, Bjorklund M, Ouwehand AC (2010) Streptococcus mutans, caries and simulation models. Nutrients 2(3):290–298 Ganesan P, Kumar CS, Bhaskar N (2008) Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds. Bioresour Technol 99(8):2717–2723 Gouveia MG, Xavier MA, Barreto AS, Gelain DP, Santos JP, Araujo AA, Silva FA, Quintans JS, Agra MF, Cabral AG, Tavares JF, Silva MS, Quintans-Junior LJ (2011) Antioxidant, antinociceptive, and anti-inflammatory properties of the ethanolic extract of combretum duarteanum in rodents. J Med Food 14(11):1389–1396 Grace-Lynn C, Darah I, Chen Y, Latha LY, Jothy SL, Sasidharan S (2012) In vitro antioxidant activity potential of lantadene A, a pentacyclic triterpenoid of Lantana plants. Molecules 17(9):11185–11198 Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P (2016) Biofilm, pathogenesis and prevention--a journey to break the wall: a review. Arch Microbiol 198(1):1–15 Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322 Herrero ER, Slomka V, Bernaerts K, Boon N, Hernandez-Sanabria E, Passoni BB, Quirynen M, Teughels W (2016) Antimicrobial effects of commensal oral species are regulated by environmental factors. J Dent 47:23–33 Horiuchi K, Shiota S, Hatano T, Yoshida T, Kuroda T, Tsuchiya T (2007) Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biol Pharm Bull 30(6):1147–1149 Hu JF, Garo E, Goering MG, Pasmore M, Yoo HD, Esser T, Sestrich J, Cremin PA, Hough GW, Perrone P, Lee YS, Le NT, O’Neil-Johnson M, Costerton JW, Eldridge GR (2006) Bacterial biofilm inhibitors from diospyros dendo. J Nat Prod 69(1):118–120 Hughes DA (1999) Effects of dietary antioxidants on the immune function of middle-aged adults. Proc Nutr Soc 58(1):79–84 Jeon JG, Rosalen PL, Falsetta ML, Koo H (2011) Natural products in caries research: current (limited) knowledge, challenges and future perspective. Caries Res 45(3):243–263 Jiang S, Chen S, Zhang C, Zhao X, Huang X, Cai Z (2017) Effect of the biofilm age and starvation on acid tolerance of biofilm formed by streptococcus mutans isolated from caries-active and caries-free adults. Int J Mol Sci 18(4):E713 Jimenez-Arellanes A, Meckes M, Torres J, Luna-Herrera J (2007) Antimycobacterial triterpenoids from Lantana hispida (Verbenaceae). J Ethnopharmacol 111(2):202–205 Katerere DR, Gray AI, Nash RJ, Waigh RD (2003) Antimicrobial activity of pentacyclic triterpenes isolated from African combretaceae. Phytochemistry 63(1):81–88 Kim D, Hwang G, Liu Y, Wang Y, Singh AP, Vorsa N, Koo H (2015) Cranberry flavonoids modulate cariogenic properties of mixed-species biofilm through exopolysaccharides-matrix disruption. PLoS One 10(12):1–13 Kim MJ, Kim CS, Park JY, Lim YK, Park SN, Ahn SJ, Jin DC, Kim TH, Kook J (2011) Antimicrobial effects of ursolic acid against mutans streptococci isolated from Koreans. Int J Oral Bio 36:7–11 Kolenbrander PE, Palmer Jr. RJ, Periasamy S, Jakubovics NS (2010) Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol 8(7):471–480 Koo H, Falsetta ML, Klein MI (2013) The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 92(12):1065–1073 Korsak D, Popowska M, Markiewicz Z (2005) Analysis of the murein of a Listeria monocytogenes EGD mutant lacking functional penicillin binding protein 5 (PBP5). Pol J Microbiol 54(4):339–342 Kozai K, Suzuki J, Okada M, Nagasaka N (1999) Effect of oleanolic-acid-cyclodextrin inclusion compounds on carries by in vitro experiment and rat-carries model. Microbios 97:179–188 Kt S, Kmk M, NB, Jimson S, RS (2013) Dental caries vaccine-a possible option? J Clin Diagn Res 7(6):1250–1253 Kurek A, Grudniak AM, Szwed M, Klicka A, Samluk L, Wolska KI, Janiszowska W, Popowska M (2010) Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes. Antonie Van Leeuwenhoek 97(1):61–68 Lamont RJ, Demuth DR, Davis CA, Malamud D, Rosan B (1991) Salivary-agglutinin-mediated adherence of streptococcus mutans to early plaque bacteria. Infect Immun 59(10):3446–3450 Lira SRS, Almeida RN, Almeida FRC, Oliveira FS, Duarte JC (2002) Preliminary studies on the analgesic properties of the ethanol extract of combretum leprosum. Pharmaceut Biol 40(3):213–215 Longhi-Balbinot DT, Lanznaster D, Baggio CH, Silva MD, Cabrera CH, Facundo VA, Santos AR (2012) Anti-inflammatory effect of triterpene 3beta, 6beta, 16beta-trihydroxylup-20(29)-ene obtained from combretum leprosum Mart & Eich in mice. J Ethnopharmacol 142(1):59–64 Ma ZZ, Hano Y, Nomura T, Chen YJ (2000) Three new triterpenoids from Peganum nigellastrum. J Nat Prod 63(3):390–392 Maeda H, Akaike T (1998) Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry 63(7):854–865 Marinho VC, Chong LY, Worthington HV, Walsh T (2016) Fluoride mouthrinses for preventing dental caries in children and adolescents. Cochrane Database Syst Rev 7:CD002284 Marsh PD, Moter A, Devine DA (2011) Dental plaque biofilms: communities, conflict and control. Periodontol 2000 55(1):16–35 Mazda Y, Kawada-Matsuo M, Kanbara K, Oogai Y, Shibata Y, Yamashita Y, Miyawaki S, Komatsuzawa H (2012) Association of CiaRH with resistance of Streptococcus mutans to antimicrobial peptides in biofilms. Mol Oral Microbiol 27(2):124–135 McGaw LJ, Rabe T, Sparg SG, Jager AK, Eloff JN, van Staden J (2001) An investigation on the biological activity of combretum species. J Ethnopharmacol 75(1):45–50 Moriarity DM, Huang J, Yancey CA, Zhang P, Setzer WN, Lawton RO, Bates RB, Caldera S (1998) Lupeol is the cytotoxic principle in the leaf extract of dendropanax cf. querceti. Planta Med 64(4):370–372 Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6(12):1451–1474 Nunes PH, Cavalcanti PM, Galvao SM, Martins MC (2009) Antiulcerogenic activity of combretum leprosum. Pharmazie 64(1):58–62 Ouyang J, Tian XL, Versey J, Wishart A, Li YH (2010) The BceABRS four-component system regulates the bacitracin-induced cell envelope stress response in Streptococcus mutans. Antimicrob Agents Chemother 54(9):3895–3906 Owen RW, Giacosa A, Hull WE, Haubner R, Spiegelhalder B, Bartsch H (2000) The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer 36(10):1235–1247 Pannangpetch P, Theansuwan W, Kongyingyoes B, Kukongviriyapan V, Kukongviriyapan U (2006) The ethanolic extract of combretum decandrum Roxb. improved glucose tolerance and increased glucose uptake of hyperinsulinemic rats. Encorine Abst 11:300 Park SN, Ahn SJ, Kook JK (2015) Oleanolic acid and ursolic acid inhibit peptidoglycan biosynthesis in streptococcus mutans UA159. Braz J Microbiol 46(2):613–617 Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4(2):89–96 Pietrovski EF, Rosa KA, Facundo VA, Rios K, Marques MC, Santos AR (2006) Antinociceptive properties of the ethanolic extract and of the triterpene 3beta,6beta,16beta-trihidroxilup-20(29)-ene obtained from the flowers of Combretum leprosum in mice. Pharmacol Biochem Behav 83(1):90–99 Plaper A, Golob M, Hafner I, Oblak M, Solmajer T, Jerala R (2003) Characterization of quercetin binding site on DNA gyrase. Biochem Biophys Res Commun 306(2):530–536 Rabe P, Twetman S, Kinnby B, Svensater G, Davies JR (2015) Effect of fluoride and chlorhexidine digluconate mouthrinses on plaque biofilms. Open Dent J 9:106–111 Sala A, Recio M, Giner RM, Manez S, Tournier H, Schinella G, Rios JL (2002) Anti-inflammatory and antioxidant properties of helichrysum italicum. J Pharm Pharmacol 54(3):365–371 Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8(1):1–10 Sedlacek MJ, Walker C (2007) Antibiotic resistance in an in vitro subgingival biofilm model. Oral Microbiol Immunol 22(5):333–339 Smina TP, Mathew J, Janardhanan KK, Devasagayam TP (2011) Antioxidant activity and toxicity profile of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst occurring in South India. Environ Toxicol Pharmacol 32(3):438–446 Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40(2):175–179 Stewart PS (2015). Antimicrobial tolerance in biofilms. Microbiol Spectr 3(3):1–13 Teles CB, Moreira-Dill LS, Silva Ade A, Facundo VA, de Azevedo Jr. WF, da Silva LH, Motta MC, Stabeli RG, Silva-Jardim I (2015) A lupane-triterpene isolated from Combretum leprosum Mart. fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro. BMC Complement Altern Med 15:165 Tredwin CJ, Scully C, Bagan-Sebastian JV (2005) Drug-induced disorders of teeth. J Dent Res 84(7):596–602 Tsuchiya H, Iinuma M (2000) Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine 7(2):161–165 Varoni E, Tarce M, Lodi G, Carrassi A (2012) Chlorhexidine (CHX) in dentistry: state of the art. Minerva Stomatol 61(9):399–419 Viau CM, Moura DJ, Facundo VA, Saffi J (2014) The natural triterpene 3beta,6beta,16beta-trihydroxy-lup-20(29)-ene obtained from the flowers of Combretum leprosum induces apoptosis in MCF-7 breast cancer cells. BMC Complement Altern Med 14:280 Wada S, Iida A, Tanaka R (2001) Screening of triterpenoids isolated from Phyllanthus flexuosus for DNA topoisomerase inhibitory activity. J Nat Prod 64(12):1545–1547 Wang T, Jónsdóttir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116(1):240–248 William B, Rwenyonyi CM, Swedberg G, Kironde F (2012) Cotrimoxazole prophylaxis specifically selects for cotrimoxazole resistance in streptococcus mutans and streptococcus sobrinus with varied polymorphisms in the target genes folA and folP. Int J Microbiol 2012:916129 Wojnicz D, Tichaczek-Goska D, Kicia M (2015) Pentacyclic triterpenes combined with ciprofloxacin help to eradicate the biofilm formed in vitro by Escherichia coli. Indian J Med Res 141(3):343–353 Wolcott R, Costerton JW, Raoult D, Cutler SJ (2013) The polymicrobial nature of biofilm infection. Clin Microbiol Infect 19(2):107–112 Wong MC, Glenny AM, Tsang BW, Lo EC, Worthington HV and Marinho VC (2010). Topical fluoride as a cause of dental fluorosis in children. Cochrane Database Syst Rev (1): CD007693 Wong HS, Townsend KM, Fenwick SG, Maker G, Trengove RD, O’Handley RM (2010) Comparative susceptibility of salmonella typhimurium biofilms of different ages to disinfectants. Biofouling 26(7):859–864