Antibacterial and photocatalytic performance of eggshell-derived CaF2-mortar cement composites

Journal of the Australian Ceramic Society - Tập 59 Số 1 - Trang 93-103 - 2023
Dikshita Nath1,2, Puneet Azad3, Sobhy M. Ibrahim4, V. P. Singh5,6
1Indian Institute of Technology,Mandi
2, University of British Columbia
3Department of Electronics and Communication Engineering, Maharaja Surajmal Institute of Technology, New Delhi, India
4Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
5Department of Applied Sciences & Humanities, Government Engineering College, Bharatpur, India
6Department of Applied Sciences & Humanities, United College of Engineering & Research, Prayagraj, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Singh, V.P., Sandeep, K., Kushwaha, H.S., Powar, S., Vaish, R.: Photocatalytic, hydrophobic and antimicrobial characteristics of ZnO nano needle embedded cement composites. Constr. Build. Mater. 158, 285–294 (2018). https://doi.org/10.1016/j.conbuildmat.2017.10.035

Jorge, F.C., Pereira, C., Ferreira, J.M.F.: Wood-cement composites: a review. Holz Als Roh-Und Werkst. 62, 370–377 (2004)

Page, C.L., Page, M.M.: Durability of concrete and cement composites. Elsevier (2007). https://doi.org/10.1533/9781845693398

Li, G.Y., Wang, P.M., Zhao, X.: Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon N. Y. 43, 1239–1245 (2005). https://doi.org/10.1016/j.carbon.2004.12.017

Rastogi, M., Vaish, R.: Visible light induced water detoxification through Portland cement composites reinforced with photocatalytic filler: a leap away from TiO2. Constr. Build. Mater. 120, 364–372 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.114

Singh, V.P., Kumar, M., Srivastava, R.S., Vaish, R.: Thermoelectric energy harvesting using cement-based composites: a review. Mater. Today Energy. 21, 100714 (2021). https://doi.org/10.1016/j.mtener.2021.100714

Sharma, M., Chauhan, A., Vaish, R.: Energy harvesting using piezoelectric cementitious composites for water cleaning applications. Mater. Res. Bull. 137, 111205 (2021). https://doi.org/10.1016/j.materresbull.2021.111205

Sharma, M., Vaish, R., Ibrahim, S.M.: Effect of poling condition on piezocatalysis activity of BaTiO3-cement composites. Mater. Lett. 280, 128583 (2020). https://doi.org/10.1016/j.matlet.2020.128583

Sharma, M., Vaish, R.: Vibration energy harvesting for degradation of dye and bacterial cells using cement-based Ba0.85Ca0.15Zr0.1Ti0.90O3 composites. Mater. Today Commun. 25, 101592 (2020). https://doi.org/10.1016/j.mtcomm.2020.101592

Kumar, A., Kumar, S., Patel, S., Sharma, M., Azad, P., Vaish, R., Kumar, R., Srikanth, K.S.: Pyroelectric energy conversion using Ba 0.85 Sr 0.15 Zr 0.1 Ti 0.9 O 3 ceramics and its cement-based composites. J. Intell. Mater. Syst. Struct. 30, 869–877 (2019). https://doi.org/10.1177/1045389X19828491

Ramirez, A.M., Demeestere, K., De Belie, N., Mäntylä, T., Levänen, E.: Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential. Build. Environ. 45, 832–838 (2010)

Wong, H.S., Barakat, R., Alhilali, A., Saleh, M., Cheeseman, C.R.: Hydrophobic concrete using waste paper sludge ash. Cem. Concr. Res. 70, 9–20 (2015). https://doi.org/10.1016/j.cemconres.2015.01.005

Hassan, M.M., Dylla, H., Mohammad, L.N., Rupnow, T.: Methods for the application of titanium dioxide coatings to concrete pavement. Int. J. Pavement Res. Technol. 5, 12–20 (2012)

Kumar, J., Srivastava, A., Bansal, A.: Production of self-cleaning cement using modified titanium dioxide, Int. J. Innov. Res. Sci. Eng. Technol. 2 2688–2693. (2013) www.ijirset.com.

Spathi, C., Young, N., Heng, J.Y.Y., Vandeperre, L.J.M., Cheeseman, C.R.: A simple method for preparing super-hydrophobic powder from paper sludge ash. Mater. Lett. 142, 80–83 (2015). https://doi.org/10.1016/j.matlet.2014.11.123

Zhao, A., Yang, J., Yang, E.H.: Self-cleaning engineered cementitious composites. Cem. Concr. Compos. 64, 74–83 (2015). https://doi.org/10.1016/j.cemconcomp.2015.09.007

Singh, V.P., Kumar, M., Sharma, M., Mishra, D., Seong, K.S., Park, S.H., Vaish, R.: Synthesis of BiF3 and BiF3-added plaster of paris composites for photocatalytic applications. Energies 14, 5159 (2021). https://doi.org/10.3390/en14165159

Singh, G., Singh, V., Vaish, R.: Controlled crystallization of BiOCl/BiF3 on ZnO–Bi2O3–B2O3 glass surfaces for photocatalytic and self-cleaning applications. Materialia. 5, 100196 (2019)

Sharma, S.K., Singh, V.P., Bhargava, A., Park, S.-H., Chauhan, V.S., Vaish, R.: Surface crystallization of BiOCl on 2Bi2O3–B2O3 glasses for photocatalytic applications. J. Mater. Sci. Mater. Electron. 32, 10520–10531 (2021)

Singh, V.P., Mishra, D., Kabachkov, E.N., Shul’ga, Y.M., Vaish, R.: The characteristics of BiOCl/Plaster of Paris composites and their photocatalytic performance under visible light illumination for self-cleaning. Mater. Sci. Energy Technol. 3, 299–307 (2020). https://doi.org/10.1016/j.mset.2019.12.001

Chen, J., sun Poon, C.: Photocatalytic construction and building materials: from fundamentals to applications. Build. Environ. 44, 1899–1906 (2009). https://doi.org/10.1016/j.buildenv.2009.01.002

Sedlbauer K.: Prediction of mould fungus formation on the surface of/and inside building components, Fraunhofer Inst. Build. Phys. 247 (2001). http://www.ibp.fraunhofer.de/content/dam/ibp/en/documents/ks_dissertation_etcm1021-30729.pdf

Horn, W., Jann, O., Wilke, O.: Suitability of small environmental chambers to test the emission of biocides from treated materials into the air. Atmos. Environ. 37, 5477–5483 (2003). https://doi.org/10.1016/j.atmosenv.2003.09.024

Herrera, J.: Assessment of fungal growth on sodium polyborate-treated cellulose insulation. J. Occup. Environ. Hyg. 2, 626–632 (2005). https://doi.org/10.1080/15459620500377667

Herrera, J., Omodon, M.E., Dillavou, C.L.: The sporocidal and sporostatic effect of sodium polyborate and boron-treated cellulose insulation on common indoor fungal species. Micol. Apl. Int. 19, 35–49 (2007)

Janus, M., Zatorska, J., Czyzewski, A., Bubacz, K., Kusiak-Nejman, E., Morawski, A.W.: Self-cleaning properties of cement plates loaded with N, C-modified TiO 2 photocatalysts. Appl. Surf. Sci. 330, 200–206 (2015). https://doi.org/10.1016/j.apsusc.2014.12.113

Liu, Z., Hansen, W.: Effect of hydrophobic surface treatment on freeze-thaw durability of concrete. Cem. Concr. Compos. 69, 49–60 (2016). https://doi.org/10.1016/j.cemconcomp.2016.03.001

Andersson, M.A., Nikulin, M., Köljalg, U., Andersson, M.C., Rainey, F., Reijula, K., Hintikka, E.L., Salkinoja-Salonen, M.: Bacteria, molds, and toxins in water-damaged building materials. Appl. Environ. Microbiol. 63, 387–393 (1997). https://doi.org/10.1128/aem.63.2.387-393.1997

Singh, G., Kumar, S., Sharma, M., Vaish, R.: Transparent CaF2 surface crystallized CaO–2B2O3 glass possessing efficient photocatalytic and antibacterial properties. J. Am. Ceram. Soc. 102, 5127–5137 (2019). https://doi.org/10.1111/jace.16395

Zhu, Y., Wang, Z., Cao, J., Zhou, X., Lu, J.: Synthesis of ZnO/CaF2 nanocomposites with good antibacterial property and poor photocatalytic activity. Mater. Lett. 108, 103–105 (2013). https://doi.org/10.1016/j.matlet.2013.06.073

Mitwalli, H., Balhaddad, A.A., AlSahafi, R., Oates, T.W., Melo, M.A.S., Xu, H.H.K., Weir, M.D.: Novel CaF2nanocomposites with antibacterial function and fluoride and calcium ion release to inhibit oral biofilm and protect teeth. J. Funct. Biomater. 11, 56 (2020). https://doi.org/10.3390/jfb11030056

Kumar, S., Sharma, M., Powar, S., Kabachkov, E.N., Vaish, R.: Impact of remnant surface polarization on photocatalytic and antibacterial performance of BaTiO 3. J. Eur. Ceram. Soc. 39, 2915–2922 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.03.029

Chauhan, A., Sharma, M., Kumar, S., Thirumalai, S., Kumar, R.V., Vaish, R.: TiO2@C core@shell nanocomposites: a single precursor synthesis of photocatalyst for efficient solar water treatment. J. Hazard. Mater. 381, 120883 (2020). https://doi.org/10.1016/j.jhazmat.2019.120883

Sharma, M., Singh, V.P., Kumar, S., Vaish, R.: Multicatalytic behavior of Ba0.85Ca0.15Ti0.9 Zr0.1O3 ceramics for pharmaceutical/dye/bacterial treatments. J. Appl. Phys. 127, 135103 (2020). https://doi.org/10.1063/1.5141813

Singh, G., Sharma, M., Vaish, R.: Emerging trends in glass-ceramic photocatalysts. Chem. Eng. J. 407, 126971 (2021). https://doi.org/10.1016/j.cej.2020.126971

Thakur, D., Sharma, M., Vaish, R., Balakrishnan, V.: WS2monolayer for Piezo-Phototronic Dye Degradation and bacterial disinfection. ACS Appl. Nano Mater. 4, 7879–7887 (2021). https://doi.org/10.1021/acsanm.1c01202

Yi, J., Weir, M.D., Melo, M.A.S., Li, T., Lynch, C.D., Oates, T.W., Dai, Q., Zhao, Z., Xu, H.H.K.: Novel rechargeable nano-CaF2 orthodontic cement with high levels of long-term fluoride release. J. Dent. 90, 103214 (2019). https://doi.org/10.1016/j.jdent.2019.103214

Yi, J., Dai, Q., Weir, M.D., Melo, M.A.S., Lynch, C.D., Oates, T.W., Zhang, K., Zhao, Z., Xu, H.H.K.: A nano-CaF2-containing orthodontic cement with antibacterial and remineralization capabilities to combat enamel white spot lesions. J. Dent. 89, 103172 (2019). https://doi.org/10.1016/j.jdent.2019.07.010

Shcheulin, A.S., Kupchikov, A.K., Angervaks, A.E., Ryskin, A.I.: A highly stable holographic medium based on CaF2: Na crystals with colloidal color centers: II Mechanisms of hologram recording and erasure,. Opt. Spectrosc. (English Transl Opt. i Spektrosk. 103, 651–654 (2007). https://doi.org/10.1134/S0030400X07100190

Wei, Y., Xiao, H., Xie, Z., Liang, S., Liang, S., Cai, X., Huang, S., Al Kheraif, A.A., Jang, H.S., Cheng, Z., Lin, J.: Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Adv. Opt. Mater. 6, 1–8 (2018). https://doi.org/10.1002/adom.201701343

Ginebra, M.P., Fernández, E., De Maeyer, E.A.P., Verbeeck, R.M.H., Boltong, M.G., Ginebra, J., Driessens, F.C.M., Planell, J.A.: Setting reaction and hardening of an apatitic calcium phosphate cement. J. Dent. Res. 76, 905–912 (1997). https://doi.org/10.1177/00220345970760041201

Pandurangappa, C., Lakshminarasappa, B.N., Nagabhushana, B.M.: Synthesis and characterization of CaF2 nanocrystals. J. Alloys Compd. 489, 592–595 (2010). https://doi.org/10.1016/j.jallcom.2009.09.118

Habte, L., Shiferaw, N., Mulatu, D., Thenepalli, T., Chilakala, R., Ahn, J.W.: Synthesis of nano-calcium oxide fromwaste eggshell by sol-gel method. Sustain. 11, 1–10 (2019). https://doi.org/10.3390/su11113196

Zhao, B., Shen, D., Tan, Q., Tang, J., Zhou, X., Hu, S., Yang, J.: Morphology-controllable synthesis, energy transfer and luminescence properties of Ce 3+/Tb 3+/Eu 3+-doped CaF 2 microcrystals. J. Mater. Sci. 52, 5857–5870 (2017)

Ye, Y., Liu, Y., Shi, T., Hu, Z., Zhong, L., Wang, H., Chen, Y.: Effect of nano-magnesium oxide on the expansion performance and hydration process of cement-based materials,. Materials (Basel). 14(13), 3766 (2021). https://doi.org/10.3390/ma14133766

Nath, D., Jangid, K., Susaniya, A., Kumar, R., Vaish, R.: Eggshell derived CaO-Portland cement antibacterial composites. Compos. Part C Open Access. 5, 100123 (2021). https://doi.org/10.1016/j.jcomc.2021.100123

Dehkordi, B.A., Nilforoushan, M.R., Talebian, N., Tayebi, M.: A comparative study on the self-cleaning behavior and antibacterial activity of Portland cement by addition of TiO2and ZnO nanoparticles. Mater. Res. Express. 8, 35403 (2021). https://doi.org/10.1088/2053-1591/abef41

Jafari, H., Afshar, S., Zabihi, O., Naebe, M.: Enhanced photocatalytic activities of TiO2-SiO2 nanohybrids immobilized on cement-based materials for dye degradation. Res. Chem. Intermed. 42, 2963–2978 (2016). https://doi.org/10.1007/s11164-015-2190-3

Ruot, B., Plassais, A., Olive, F., Guillot, L., Bonafous, L.: TiO2-containing cement pastes and mortars: measurements of the photocatalytic efficiency using a rhodamine B-based colourimetric test. Sol. Energy. 83, 1794–1801 (2009). https://doi.org/10.1016/j.solener.2009.05.017

Neppolian, B., Kanel, S.R., Choi, H.C., Shankar, M.V., Arabindoo, B., Murugesan, V.: Photocatalytic degradation of reactive yellow 17 dye in aqueous solution in the presence of TiO2 with cement binder. Int. J. Photoenergy. 5, 45–49 (2003). https://doi.org/10.1155/S1110662X03000126

Lackhoff, M., Prieto, X., Nestle, N., Dehn, F., Niessner, R.: Photocatalytic activity of semiconductor-modified cement - influence of semiconductor type and cement ageing. Appl. Catal. B Environ. 43, 205–216 (2003). https://doi.org/10.1016/S0926-3373(02)00303-X

Wang, F., Yang, L., Wang, H., Yu, H.: Facile preparation of photocatalytic exposed aggregate concrete with highly efficient and stable catalytic performance. Chem. Eng. J. 264, 577–586 (2015). https://doi.org/10.1016/j.cej.2014.11.129

Rachel, A., Subrahmanyam, M., Boule, P.: Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl. Catal. B Environ. 37, 301–308 (2002). https://doi.org/10.1016/S0926-3373(02)00007-3

Vulic, T., Hadnadjev-Kostic, M., Rudic, O., Radeka, M., Marinkovic-Neducin, R., Ranogajec, J.: Improvement of cement-based mortars by application of photocatalytic active Ti-Zn-Al nanocomposites. Cem. Concr. Compos. 36, 121–127 (2013). https://doi.org/10.1016/j.cemconcomp.2012.07.005