Antibacterial Activity and AbFtsZ Binding Properties of Fungal Metabolites Isolated from Mexican Mangroves
Revista Brasileira de Farmacognosia - Trang 1-13 - 2024
Tóm tắt
Antimicrobial resistance is emerging as a global health challenge that requires immediate and concerted attention. Accordingly, the WHO has issued alerts urging to continue developing antibiotics with novel mechanisms of action toward clinically important pathogens, including Acinetobacter baumannii. In this context, fungi have played a crucial role in the discovery and development of antibiotics. Therefore, in this work, three fungal strains were prioritized based on their metabolic profiles and antibacterial activity against a pan-resistant isolate of A. baumannii, to identify potential antibiotic molecules. Chemical investigation of the selected fungi (mangrove endophytes) led to the isolation of asperazine (1), aurasperone B (2), aurasperone F (3), TMC-256A1 (4), fonsecin B (5), dianhydroaurasperone C (6), aurasperone A (7), pyrophen (8), and penicillide (9). Moreover, an in vitro assay to detect ligands of the filamentous temperature-sensitive mutant Z enzyme of A. baumannii (AbFtsZ), a GTPase that plays a central role in bacterial division, was developed to correlate the antibacterial properties of the isolated molecules to a mechanism of action. Compounds 1–4 and 9 inhibited the growth of A. baumannii. Interestingly, compounds 2, 3, and 5–9 interacted with AbFtsZ1-412, increasing its GTPase activity. Conversely, compound 4 exhibited an outstanding ability to act as an inhibitor of both the enzymatic activity and the growth of the strain under study.
Tài liệu tham khảo
Abdou R, Alqahtani AM, Attia GH (2021) Anticancer natural products from Aspergillus neoniger, an endophyte of Ficus carica. Bull Natl Res Cent 4:74. https://doi.org/10.1186/s42269-021-00536-8
Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7:642–653. https://doi.org/10.1038/nrmicro2198
Agrawal S, Deshmukh SK, Reddy MS, Prasad R, Goel M (2020) Endolichenic fungi: a hidden source of bioactive metabolites. S Afr J Bot 134:163–186. https://doi.org/10.1016/j.sajb.2019.12.008
Antonov AS, Leshchenko EV, Zhuravleva OI, Dyshlovoy SA, Von Amsberg G, Popov RS, Denisenko VA, Kirichuk NN, Afiyatullov SS (2021) Naphto-Γ-pyrones from the marine-derived fungus Aspergillus foetidus. Nat Prod Res 35:131–134. https://doi.org/10.1080/14786419.2019.1610954
Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F (2020) Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc 15:1954–1991. https://doi.org/10.1038/s41596-020-0317-5
Barnes CL, Steiner JR, Torres E, Pacheco R, Marquez H (1990) Structure and absolute configuration of pyrophen, a novel pryrone derivative of L-phenylalanine from Aspergillus niger. Int J Pept Protein Res 36:292–296. https://doi.org/10.1111/j.1399-3011.1990.tb00981.x
Baykov A, Evtushenko O, Avaeva S (1988) A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal Biochem 171:266–270. https://doi.org/10.1016/0003-2697(88)90484-8
Bouras N, Mathieu F, Coppel Y, Lebrihi A (2005) Aurasperone F–a new member of the naphtho-gamma-pyrone class isolated from a cultured microfungus, Aspergillus niger C-433. Nat Prod Res 19:653–659. https://doi.org/10.1080/14786410412331286955
Breda A, Valadares NF, de Souza ON, Garratt RC (2006) Protein structure, modelling and applications. In: Gruber A, Durham AM, Huynh C et al (eds) Bioinformatics in tropical disease research: a practical and case-study approach, Chapter A06. National Center for Biotechnology Information, US, pp 1–3
Campos FR, Barison A, Daolio C, Ferreira AG, Rodrigues-Fo E (2005) Complete 1H and 13C NMR assignments of aurasperone A and fonsecinone A, two bis-naphthopyrones produced by Aspergillus aculeatus. Magn Reson Chem 43:962–965. https://doi.org/10.1002/mrc.1654
Carboué Q, Maresca M, Herbette G, Roussos S, Hamrouni R, Bombarda I (2019) Naphtho-gamma-pyrones produced by Aspergillus tubingensis G131: new source of natural nontoxic antioxidants. Biomolecules 10:29. https://doi.org/10.3390/biom10010029
Carro L (2019) Recent progress in the development of small-molecule FtsZ inhibitors as chemical tools for the development of novel antibiotics. Antibiotics 8:217. https://doi.org/10.3390/antibiotics8040217
Chen Y, Bjornson K, Redick SD, Erickson HP (2005) A rapid fluorescence assay for FtsZ assembly indicates cooperative assembly with a dimer nucleus. Biophys J 88:505–514. https://doi.org/10.1529/biophysj.104.044149
CLSI (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically M07-A10 Standard. Clinical Laboratory Standards Institute 32:24-29
Detlefsen N, Hauberg S, Boomsma W (2022) Learning meaningful representations of protein sequences. Nat Commun 13:1914. https://doi.org/10.1038/s41467-022-29443-w
Devadatha B, Jones E, Pang K, Abdel-Wahab M, Hyde K, Sakayaroj J, Bahkali A, Calabon M, Sarma V, Sutreong S (2021) Occurrence and geographical distribution of mangrove fungi. FUngal Diversity 106:137–227. https://doi.org/10.1007/s13225-020-00468-0
Domadia PN, Bhunia A, Sivaraman J, Swarup S, Dasgupta D (2008) Berberine targets assembly of Escherichia coli cell division protein FtsZ. Biochemistry 47:3225–3234. https://doi.org/10.1021/bi7018546
Ernst M, Kang KB, Caraballo-Rodríguez AM, Nothias LF, Wandy J, Chen C, Wang M, Rogers S, Medema MH, Dorrestein PC (2019) MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 9:144. https://doi.org/10.3390/metabo9070144
Fang W, Lin X, Wang J, Liu Y, Tao H, Zhou X (2016) Asperpyrone-type bis-naphtho-γ-pyrones with COX-2–inhibitory activities from marine-derived fungus Aspergillus niger. Molecules 21:941. https://doi.org/10.3390/molecules21070941
Flajs D, Peraica M (2009) Toxicological properties of citrinin. Arh Hig Rada Toksikol 60:457. https://doi.org/10.2478/10004-1254-60-2009-1992
Founou RC, Founou LL, Essack SY (2017) Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLoS ONE 12:e0189621. https://doi.org/10.1371/journal.pone.0189621
García-Patiño MG, García-Contreras R, Licona-Limón P (2017) The immune response against Acinetobacter baumannii, an emerging pathogen in nosocomial infections. Front Immunol 8:441. https://doi.org/10.3389/fimmu.2017.00441
Gupta RC, Srivastava A, Lall R (2018) Ochratoxins and citrinin. In: Gupta RC. Veterinary toxicology, Chapter 72, Academic Press, pp 1019–1027. https://doi.org/10.1016/B978-0-12-811410-0.00072-6
Hamed A, Abdel-Razek AS, Araby M, Abu-Elghait M, El-Hosari DG, Frese M, Soliman HS, Stammler HG, Sewald N, Shaaban M (2021) Meleagrin from marine fungus Emericella dentata Nq45: crystal structure and diverse biological activity studies. Nat Prod Res 35:3830–3838. https://doi.org/10.1080/14786419.2020.1741583
Huang HB, Xiao ZE, Feng XJ, Huang CH, Zhu X, Ju JH, Li MF, Lin YC, Liu L, She ZG (2011) Cytotoxic naphtho-γ-pyrones from the mangrove endophytic fungus Aspergillus tubingensis (GX1-5E). Helv Chim Acta 94:1732–1740. https://doi.org/10.1002/hlca.201100050
Hurley KA, Santos TM, Nepomuceno GM, Huynh V, Shaw JT, Weibel DB (2016) Targeting the bacterial division protein FtsZ. J Med Chem 59:6975–6998. https://doi.org/10.1021/acs.jmedchem.5b01098
Ibrahim SR, ALsiyud DF, Alfaeq AY, Mohamed SG, Mohamed GA (2023) Benzophenones-natural metabolites with great Hopes in drug discovery: structures, occurrence, bioactivities, and biosynthesis. RSC Adv 13:23472-23498. https://doi.org/10.1039/D3RA02788K
Ikeda SI, Sugita M, Yoshimura A, Sumizawa T, Douzono H, Nagata Y, Akiyama SI (1990) Aspergillus species strain m39 produces two naphtho-γ-pyrones that reverse drug resistance in human KB cells. Int J Cancer 45:508–513. https://doi.org/10.1002/ijc.2910450323
Jiménez-Arreola BS, Aguilar-Ramírez E, Cano-Sánchez P, Morales-Jiménez J, González-Andrade M, Medina-Franco JL, Rivera-Chávez J (2020) Dimeric phenalenones from Talaromyces sp. (IQ-313) inhibit hPTP1B1-400: insights into mechanistic kinetics from in vitro and in silico studies. Bioorg Chem 101:103893. https://doi.org/10.1016/j.bioorg.2020.103893
Kusuma KD, Payne M, Ung AT, Bottomley AL, Harry EJ (2019) FtsZ as an antibacterial target: status and guidelines for progressing this avenue. ACS Infect Dis 5:1279–1294. https://doi.org/10.1021/acsinfecdis.9b00055
Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A (2021) Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 10:373. https://doi.org/10.3390/pathogens10030373
Lacerda L, Carvalho CEV, Tanizaki K, Ovalle ARC, Rezende CE (1993) The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica 25:252–257. https://doi.org/10.2307/2388783
Lee HM, Chan DSH, Yang F, Lam HY, Yan SC, Che CM, Ma DL, Leung CH (2010) Identification of natural product fonsecin B as a stabilizing ligand of c-myc G-quadruplex DNA by high-throughput virtual screening. Chem Commun 46:4680–4682. https://doi.org/10.1039/B926359D
Lešić T, Kmetič I, Kiš M, Vulić A, Kudumija N, Zadravec M, Murati T, Pleadin J (2019) Sterigmatocistin–prekursor aflatoksina B1 u hrani i hrani za životinje. Croatian J Food Technol Biotechnol Nutr 14:105–112. https://doi.org/10.31895/hcptbn.14.3-4.2
Leutou AS, Yun K, Son BW (2016) Induced production of 6, 9-dibromoflavasperone, a new radical scavenging naphthopyranone in the marine-mudflat-derived fungus Aspergillus niger. Arch Pharmacal Res 39:806–810. https://doi.org/10.1007/s12272-016-0764-2
Loach RP, Fenton OS, Movassaghi M (2016) Concise total synthesis of (+)-asperazine,(+)-pestalazine a, and (+)-iso-pestalazine A. Structure revision of (+)-pestalazine a. J Am Chem Soc 138:1057–1064. https://doi.org/10.1021/jacs.5b12392
Lu S, Tian J, Sun W, Meng J, Wang X, Fu X, Wang A, Lai D, Liu Y, Zhou L (2014) Bis-naphtho-γ-pyrones from fungi and their bioactivities. Molecules 19:7169–7188. https://doi.org/10.3390/molecules19067169
Ma S, Cong C, Meng X, Cao S, Yang H, Guo Y, Lu X, Ma S (2013) Synthesis and on-target antibacterial activity of novel 3-elongated arylalkoxybenzamide derivatives as inhibitors of the bacterial cell division protein FtsZ. Bioorg Med Chem Lett 23:4076–4079. https://doi.org/10.1016/j.bmcl.2013.05.056
Martín-García F, Salvarelli E, Mendieta-Moreno JI, Vicente M, Mingorance J, Mendieta J, Gómez-Puertas P (2012) Molecular dynamics simulation of GTPase activity in polymers of the cell division protein FtsZ. FEBS Lett 586:1236–1239. https://doi.org/10.1016/j.febslet.2012.03.042
Mohimani H, Gurevich A, Shlemov A, Mikheenko A, Korobeynikov A, Cao L, Shcherbin E, Nothias LF, Dorrestein PC, Pevzner PA (2018) Dereplication of microbial metabolites through database search of mass spectra. Nat Commun 9:4035. https://doi.org/10.1038/s41467-018-06082-8
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, Han C, Bisignano C, Rao P, Wool E (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
O'Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations. Government of the United Kingdom, https://apo.org.au/node/63983. Accessed 20 May 2023
Perrone G, Susca A, Cozzi G, Ehrlich K, Varga J, Frisvad J, Meijer M, Noonim P, Mahakarnchanakul W, Samson R (2007) Biodiversity of Aspergillus species in some important agricultural products. Stud Mycol 59:53–66. https://doi.org/10.3114/sim.2007.59.07
Pilevneli AD, Ebada SS, Kaşkatepe B, Konuklugil B (2021) Penicacids H-J, three new mycophenolic acid derivatives from the marine-derived fungus Rhizopus oryzae. RSC Adv 11:34938–34944. https://doi.org/10.1039/D1RA07196C
Priestap HA (1984) New naphthopyrones from aspergillus fonsecaeus. Tetrahedron 40:3617–3624. https://doi.org/10.1016/S0040-4020(01)88792-5
Priestap HA (1986) 13C NMR spectroscopy of naphtho-γ-pyrones. Magn Reson Chem 24:875–878. https://doi.org/10.1002/mrc.1260241006
Pushpakaran A, Battaje RR, Panda D (2022) Vitamin K3 inhibits FtsZ assembly, disrupts the Z-ring in Streptococcus pneumoniae and displays anti-pneumococcal activity. Biochem J 479:1543–1558. https://doi.org/10.1042/BCJ20220077
Quan A, Robinson PJ (2005) Rapid purification of native dynamin I and colorimetric GTPase assay. Methods Enzymol 404:556–569. https://doi.org/10.1016/S0076-6879(05)04049-8
Rai D, Singh JK, Roy N, Panda D (2008) Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J 410:147–155. https://doi.org/10.1042/BJ20070891
Raorane CJ, Lee JH, Kim YG, Rajasekharan SK, García-Contreras R, Lee J (2019) Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front Microbiol 10:990. https://doi.org/10.3389/fmicb.2019.00990
Rivera-Chávez J, Caesar LK, Garcia-Salazar JJ, Raja HA, Cech NB, Pearce CJ, Oberlies NH (2019a) Mycopyranone: a 8,8ˈ-binaphthopyranone with potent anti-MRSA activity from the fungus Phialemoniopsis sp. Tetrahedron Lett 60:594–597. https://doi.org/10.1016/j.tetlet.2019.01.029
Rivera-Chávez J, El-Elimat T, Gallagher JM, Graf TN, Fournier J, Panigrahi GK, Deep G, Bunch RL, Raja HA, Oberlies NH (2019b) Delitpyrones: α-pyrone derivatives from a freshwater Delitschia sp. Planta Med 85:62–71. https://doi.org/10.1055/a-0654-5850
Rivera-Chávez J, Zacatenco-Abarca J, Morales-Jiménez J, Martinez-Avina B, Hernández-Ortega SN, Aguilar-Ramírez E (2019c) Cuautepestalorin, a 7,8-dihydrochromene–oxoisochromane adduct bearing a hexacyclic scaffold from Pestalotiopsis sp. IQ-011. Org Lett 21:3558–3562. https://doi.org/10.1021/acs.orglett.9b00962
Sakurai M, Kohno J, Yamamoto K, Okuda T, Nishio M, Kawano K, Ohnuki T (2002) TMC-256A1 and C1, new inhibitors of IL-4 signal transduction produced by Aspergillus niger var niger TC 1629. J Antibiotics 55:685–692. https://doi.org/10.7164/antibiotics.55.685
Salituro GM, Pettibone DJ, Clineschmidt BV, Williamson JM, Zink DL (1993) Potent, non-peptidic oxytocin receptor antagonists from a natural source. Bioorg Med Chem Lett 3:337–340. https://doi.org/10.1016/S0960-894X(01)80905-7
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303
Siriwardane A, Kumar NS, Jayasinghe L, Fujimoto Y (2015) Chemical investigation of metabolites produced by an endophytic Aspergillus sp. isolated from Limonia acidissima. Nat Prod Res 29:1384–1387. https://doi.org/10.1080/14786419.2015.1025230
Song Y, Li H, Ye Y, Shan C, Yang Y, Tan R (2004) Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett 241:67–72. https://doi.org/10.1016/j.femsle.2004.10.005
Song F, Dong Y, Wei S, Zhang X, Zhang K, Xu X (2022) New antibacterial secondary metabolites from a marine-derived Talaromyces sp. strain BTBU20213036. Antibiotics 11:222. https://doi.org/10.3390/antibiotics11020222
Song F (2022) Antimicrobial natural products. Antibiotics 11:1765. https://doi.org/10.3390/antibiotics11121765
Sosa-Hernández O, Vázquez-Zamora C, Gutiérrez-Muñoz VH, Lugo-Zamudio GE, Cureño-Díaz MA (2020) Resultados del Programa de Uso Racional de Antimicrobianos en un hospital de México, 2013–2018. Rev Panam Salud Publica 44:e45. https://doi.org/10.26633/RPSP.2020.45
Sosa-Rodríguez T, Sánchez-Nieves J, Melgarejo LM (2009) Papel funcional de los hongos en ecosistemas de manglar. Bol Invest Mar Cost 38:38–57
Suzuki K, Nozawa K, Udagawa S, Nakajima S, Kawai K (1991) Penicillide and dehydroisopenicillide from Talaromyces derxii. Phytochemistry 30:2096–2098. https://doi.org/10.1016/0031-9422(91)85080-J
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
Tao H, Wei X, Lin X, Zhou X, Dong J, Yang B (2017) Penixanthones A and B, two new xanthone derivatives from fungus Penicillium sp. SYFz-1 derived of mangrove soil sample. Nat Prod Res 31:2218–2222. https://doi.org/10.1080/14786419.2017.1297442
Tripathy S, Sahu B (2019) FtsZ inhibitors as a new genera of antibacterial agents. Bioorg Chem 91:103169. https://doi.org/10.1016/j.bioorg.2019.103169
Van Der Hooft JJJ, Wandy J, Barrett MP, Burgess KE, Rogers S (2016) Topic modeling for untargeted substructure exploration in metabolomics. Proc Natl Acad Sci 113:13738–13743. https://doi.org/10.1073/pnas.1608041113
Varoglu M, Corbett TH, Valeriote FA, Crews P (1997) Asperazine, a selective cytotoxic alkaloid from a sponge-derived culture of Aspergillus niger. J Org Chem 62:7078–7079. https://doi.org/10.1021/jo970568z
WHO (2017) La OMS publica la lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos. from https://www.who.int/es/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed 7 Sept 2023
Zeng WN, Cai J, Wang B, Chen LY, Pan CX, Chen SJ, Huang GL, Zheng CJ (2022) A new bioactive isocoumarin from the mangrove-derived fungus Penicillium sp. TGM112. J Asian Nat Prod Res 24:679–684. https://doi.org/10.1080/10286020.2021.1952188
Zhang Y, Li XM, Wang BG (2007) Nigerasperones A~ C, new monomeric and dimeric naphtho-γ-pyrones from a marine alga-derived endophytic fungus Aspergillus niger EN-13. J Antibiot 60:204–210. https://doi.org/10.1038/ja.2007.24
Zhang Y, Li XM, Feng Y, Wang BG (2010) Phenethyl-α-pyrone derivatives and cyclodipeptides from a marine algous endophytic fungus Aspergillus niger EN–13. Nat Prod Res 24:1036–1043. https://doi.org/10.1080/14786410902940875
Zulqarnain ZI, Cox R, Anwar J, Ahmad N, Khan K, Iqbal M, Manzoor N, Khattak SU (2020) Antifungal activity of compounds isolated from Aspergillus niger and their molecular docking studies with tomatinase. Nat Prod Res 34:2642–2646. https://doi.org/10.1080/14786419.2018.1548447