Anti-van der Waerden Numbers on Graphs

Springer Science and Business Media LLC - Tập 38 - Trang 1-16 - 2022
Zhanar Berikkyzy1, Alex Schulte2, Elizabeth Sprangel2, Shanise Walker3, Nathan Warnberg4, Michael Young2
1Fairfield University, Fairfield, USA
2Iowa State University, Ames, USA
3University of Wisconsin-Eau Claire, Eau Claire, USA
4University of Wisconsin-La Crosse, La Crosse, USA

Tóm tắt

In this paper arithmetic progressions on the integers and the integers modulo n are extended to graphs. A k-term arithmetic progression of a graph G (k-AP) is a list of k distinct vertices such that the distance between consecutive pairs is constant. A rainbow k-AP is a k-AP where each vertex is colored distinctly. This allows for the definition of the anti-van der Waerden number of a graph G, which is the least positive integer r such that every exact r-coloring of G contains a rainbow k-AP. Much of the focus of this paper is on 3-term arithmetic progressions for which general bounds are obtained based on the radius and diameter of a graph. The general bounds are improved for trees and Cartesian products and exact values are determined for some classes of graphs. Longer k-term arithmetic progressions are considered and a connection between the Ramsey number of paths and the anti-van der Waerden number of graphs is established.Please confirm if the inserted city and country name for all affiliations is correct. Amend if necessary.The cities and affiliations are correct.

Tài liệu tham khảo