Chống dao động và định vị cho cần cẩu tháp hai con lắc bằng Bộ điều khiển từ chối nhiễu chủ động cải tiến

Xinyu Kang1, Lin Chai1, Huikang Liu1
1College of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, China

Tóm tắt

Trong hầu hết các tình huống làm việc của cần cẩu tháp, tải trọng dao động xung quanh các móc, dẫn đến tác động của con lắc đôi. Điều này làm cho cần cẩu tháp trở nên kém điều khiển hơn và phi tuyến tính hơn, từ đó khó kiểm soát hơn. Để giải quyết những vấn đề này, chúng tôi đã thiết kế một Bộ điều khiển từ chối nhiễu chủ động cải tiến (I-ADRC). Đầu tiên, chúng tôi đề xuất một hàm phi tuyến mượt mà để giảm dao động tần số cao của hệ thống ở trạng thái ổn định và tránh hiện tượng “chattering”. Thứ hai, chúng tôi xây dựng một loại Quan sát viên trạng thái mở rộng (ESO) mới để cải thiện hiệu suất phản hồi động của hệ thống. Sau đó, chúng tôi chứng minh rằng hệ thống vòng kín là ổn định tiệm cận dưới các tham số hợp lý bằng cách sử dụng tiêu chuẩn Hurwitz và kỹ thuật Lyapunov. Kết quả mô phỏng số cho thấy bộ điều khiển mà chúng tôi đề xuất có hiệu suất điều khiển vượt trội và tính ổn định mạnh mẽ.

Từ khóa

#cần cẩu tháp #bộ điều khiển từ chối nhiễu #dao động #trạng thái mở rộng #ổn định tiệm cận

Tài liệu tham khảo

M. Zhang, Y. Zhang, B. Ji, C. Ma, and X. Cheng, “Modeling and energy-based sway reduction control for tower crane systems with double-pendulum and spherical-pendulum effects,” Measurement and Control, vol. 53, no. 1–2, pp. 141–150, 2020. D. Blackburn, W. Singhose, J. Kitchen, V. Patrangenaru, J. Lawrence, T. Kamoi, and A. Taura, “Command shaping for nonlinear crane dynamics,” Journal of Vibration and Control, vol. 16, no. 4, pp. 477–501, 2010. J. Huang, E. Maleki, and W. Singhose, “Dynamics and swing control of mobile boom cranes subject to wind disturbances,” IET Control Theory & Applications, vol. 7, no. 9, pp. 1187–1195, 2013. J. Vaughan, D. Kim, and W. Singhose, “Control of tower cranes with double-pendulum payload dynamics,” IEEE Transactions on Control Systems Technology, vol. 18, no. 6, pp. 1345–1358, 2010. N. Sun, Y. Fang, X. Zhang, and Y. Yuan, “Transportation task-oriented trajectory planning for underactuated overhead cranes using geometric analysis,” IET Control Theory & Applications, vol. 6, no. 10, pp. 1410–1423, 2012. W. Devesse, M. Ramteen, L. Feng, and J. Wikander, “A real-time optimal control method for swing-free tower crane motions,” Proc. of IEEE International Conference on Automation Science and Engineering (CASE), IEEE, pp. 336–341, 2013. N. Sun, Y. Fang, H. Chen, B. Lu, and Y. Fu, “Slew/translation positioning and swing suppression for 4-dof tower cranes with parametric uncertainties: Design and hardware experimentation,” IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6407–6418, 2016. H. Chen and N. Sun, “Nonlinear control of underactuated systems subject to both actuated and unactuated state constraints with experimental verification,” IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7702–7714, 2019. M. Böck and A. Kugi, “Real-time nonlinear model predictive path-following control of a laboratory tower crane,” IEEE Transactions on Control Systems Technology, vol. 22, no. 4, pp. 1461–1473, 2013. Š. Ileš, J. Matuško, and F. Kolonić, “Sequential distributed predictive control of a 3d tower crane,” Control Engineering Practice, vol. 79, pp. 22–35, 2018. M. Zhang, Y. Zhang, B. Ji, C. Ma, and X. Cheng, “Adaptive sway reduction for tower crane systems with varying cable lengths,” Automation in Construction, vol. 119, 103342, 2020. H. Chen, Y. Fang, and N. Sun, “A swing constraint guaranteed mpc algorithm for underactuated overhead cranes,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 5, pp. 2543–2555, 2016. A. T. Le and S.-G. Lee, “3d cooperative control of tower cranes using robust adaptive techniques,” Journal of the Franklin Institute, vol. 354, no. 18, pp. 8333–8357, 2017. N. Sun, Y. Fang, H. Chen, and B. He, “Adaptive nonlinear crane control with load hoisting/lowering and unknown parameters: Design and experiments,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2107–2119, 2014. W. He, S. Zhang, and S. S. Ge, “Adaptive control of a flexible crane system with the boundary output constraint,” IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 4126–4133, 2013. X.-Z. Jin, W.-W. Che, Z.-G. Wu, and H. Wang, “Analog control circuit designs for a class of continuous-time adaptive fault-tolerant control systems,” IEEE Transactions on Cybernetics, vol. 52, no. 6, pp. 4209–4220, 2022. H. Chen, Y. Fang, and N. Sun, “An adaptive tracking control method with swing suppression for 4-dof tower crane systems,” Mechanical Systems and Signal Processing, vol. 123, pp. 426–442, 2019. L. A. Tuan and S.-G. Lee, “Sliding mode controls of double-pendulum crane systems,” Journal of Mechanical Science and Technology, vol. 27, no. 6, pp. 1863–1873, 2013. L. A. Tuan, H. M. Cuong, P. V. Trieu, L. C. Nho, V. D. Thuan, and L. V. Anh, “Adaptive neural network sliding mode control of shipboard container cranes considering actuator backlash,” Mechanical Systems and Signal Processing, vol. 112, pp. 233–250, 2018. M.-S. Park, D. Chwa, and M. Eom, “Adaptive sliding-mode antisway control of uncertain overhead cranes with high-speed hoisting motion,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 5, pp. 1262–1271, 2014. Z. Liu, N. Sun, Y. Wu, X. Xin, and Y. Fang, “Nonlinear sliding mode tracking control of underactuated tower cranes,” International Journal of Control, Automation, and Systems, vol. 19, no. 2, pp. 1065–1077, 2021. T.-S. Wu, M. Karkoub, W.-S. Yu, C.-T. Chen, M.-G. Her, and K.-W. Wu, “Anti-sway tracking control of tower cranes with delayed uncertainty using a robust adaptive fuzzy control,” Fuzzy Sets and Systems, vol. 290, pp. 118–137, 2016. D. Qian, S. Tong, and S. Lee, “Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes,” Automation in Construction, vol. 65, pp. 133–143, 2016. X. Wu, K. Xu, and X. He, “Disturbance-observer-based nonlinear control for overhead cranes subject to uncertain disturbances,” Mechanical Systems and Signal Processing, vol. 139, p. 106631, 2020. L.-H. Lee, P.-H. Huang, Y.-C. Shih, T.-C. Chiang, and C.-Y. Chang, “Parallel neural network combined with sliding mode control in overhead crane control system,” Journal of Vibration and Control, vol. 20, no. 5, pp. 749–760, 2014. Y. Zhao and H. Gao, “Fuzzy-model-based control of an overhead crane with input delay and actuator saturation,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 1, pp. 181–186, 2011. L. Chai, Q. Guo, H. Liu, and M. Ding, “Linear active disturbance rejection control for double-pendulum overhead cranes,” IEEE Access, vol. 9, pp. 52225–52237, 2021. H. Ouyang, Z. Tian, L. Yu, and G. Zhang, “Load swing rejection for double-pendulum tower cranes using energy-shaping-based control with actuator output limitation,” ISA Transactions, vol. 101, pp. 246–255, 2020. Z. Tian, L. Yu, H. Ouyang, and G. Zhang, “Transportation and swing reduction for double-pendulum tower cranes using partial enhanced-coupling nonlinear controller with initial saturation,” ISA Transactions, vol. 112, pp. 122–136, 2021. H. Ouyang, Z. Tian, L. Yu, and G. Zhang, “Adaptive tracking controller design for double-pendulum tower cranes,” Mechanism and Machine Theory, vol. 153, 103980, 2020. X. Jin, S. Lü, and J. Yu, “Adaptive NN-based consensus for a class of nonlinear multiagent systems with actuator faults and faulty networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 8, pp. 3474–3486, 2022. M. Zhang and X. Jing, “Adaptive neural network tracking control for double-pendulum tower crane systems with nonideal inputs,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 4, pp. 2514–2530, 2022. H. Ouyang, Z. Tian, L. Yu, and G. Zhang, “Partial enhanced-coupling control approach for trajectory tracking and swing rejection in tower cranes with double-pendulum effect,” Mechanical Systems and Signal Processing, vol. 156, 107613, 2021. B.-Z. Guo and H.-C. Zhou, “The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance,” IEEE Transactions on Automatic Control, vol. 60, no. 1, pp. 143–157, 2014. X.-H. Chang, J. Song, and X. Zhao, “Fuzzy Resilient h∞ filter design for continuous-time nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 30, no. 2, pp. 591–596, 2022. Z. Gao, “Scaling and bandwidth-parameterization based controller tuning,” Proc. of the American Control Conference, vol. 6, pp. 4989–4996, 2006. X.-H. Chang and Y. Liu, “Quantized output feedback control of AFS for electric vehicles with transmission delay and data dropouts,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 16026–16037, 2022. H. K. Khalil, Nonlinear Systems, 3rd ed., Patience Hall, vol. 115, 2002.