Anti-reflective porous Ge by open-circuit and lithography-free metal-assisted chemical etching

Applied Surface Science - Tập 546 - Trang 149083 - 2021
Yi-Yu Zhang1, Sang-Ho Shin1, Hyeok-Joong Kang2, Sohee Jeon2, Soon Hyoung Hwang2, Weidong Zhou3, Jun-Ho Jeong2, Xiuling Li4, Munho Kim1
1School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
2Nano-Convergence Mechanical Research Division, Korea Institute of Machinery and Materials, Yuseong-Gu, Daejeon 34103, Republic of Korea
3Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
4Department of Electrical and Computer Engineering and Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Tài liệu tham khảo

Canham, 1990, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett., 57, 1046, 10.1063/1.103561 Collins, 1997, Luminescence from porous silicon: mechanism debated, Phys. Today, 50, 83, 10.1063/1.881872 Koshida, 1992, Visible electroluminescence from porous silicon, Appl. Phys. Lett., 60, 347, 10.1063/1.106652 Iyengar, 2010, Optical properties of silicon light trapping structures for photovoltaics, Sol. Energy Mater. Sol. Cells, 94, 2251, 10.1016/j.solmat.2010.07.020 Zerdali, 2013, Nickel on porous silicon MSM photo-detector and quantum confinement in nanocrystallites structure as methods to reduce dark current, Eur. Phys. J. Appl. Phys., 61, 10.1051/epjap/2013120216 Barbagiovanni, 2012, Quantum confinement in Si and Ge nanostructures, J. Appl. Phys., 111, 034307, 10.1063/1.3680884 Rojas, 2011, Porous germanium layers by electrochemical etching for layer transfer processes of high-efficiency multi-junction solar cells, ECS Trans., 33, 95, 10.1149/1.3553351 Impellizzeri, 2012, Nanoporous Ge electrode as a template for nano-sized (<5 nm) Au aggregates, Nanotechnology, 23, 395604, 10.1088/0957-4484/23/39/395604 Cavalcoli, 2015, Optical properties of nanoporous germanium thin films, ACS Appl. Mater. Inter., 7, 16992, 10.1021/acsami.5b02089 Shieh, 2004, Nanoparticle-assisted growth of porous germanium thin films, Adv. Mater., 16, 1121, 10.1002/adma.200306541 Romano, 2010, Nanostructuring in Ge by self-ion implantation, J. Appl. Phys., 107, 10.1063/1.3372757 Tutashkonko, 2013, Mesoporous Germanium formed by bipolar electrochemical etching, Electrochim. acta, 88, 256, 10.1016/j.electacta.2012.10.031 Kuryliuk, 2019, Thermal conductivity of strained silicon: molecular dynamics insight and kinetic theory approach, J. Appl. Phys., 126, 055109, 10.1063/1.5108780 Fang, 2006, Electrochemical pore etching in germanium, J. Electroanal. Chem., 589, 259, 10.1016/j.jelechem.2006.02.021 Hildreth, 2009, Effect of catalyst shape and etchant composition on etching direction in metal-assisted chemical etching of silicon to fabricate 3D nanostructures, ACS Nano, 3, 4033, 10.1021/nn901174e Kim, 2011, Curved silicon nanowires with ribbon-like cross sections by metal-assisted chemical etching, ACS Nano, 5, 5242, 10.1021/nn2014358 Kong, 2017, Damage-free smooth-sidewall InGaAs nanopillar array by metal-assisted chemical etching, ACS Nano, 11, 10193, 10.1021/acsnano.7b04752 Kim, 2018, Self-anchored catalyst Interface enables ordered via array formation from submicrometer to millimeter scale for polycrystalline and single-crystalline silicon, ACS Appl. Mater. Inter., 10, 9116, 10.1021/acsami.7b17708 Kim, 2019, CMOS-Compatible Catalyst for MacEtch: titanium nitride-assisted chemical etching in vapor phase for high Aspect ratio Silicon nanostructures, ACS Appl. Mater. Inter., 11, 27371, 10.1021/acsami.9b00871 Kim, 2018, Enhanced performance of Ge photodiodes via monolithic antireflection texturing and α-Ge self-passivation by inverse metal-assisted chemical etching, ACS Nano, 12, 6748, 10.1021/acsnano.8b01848 Kim, 2019, Resist-free direct stamp imprinting of GaAs via metal-assisted chemical etching, ACS Appl. Mater. Inter., 11, 13574, 10.1021/acsami.9b00456 Huang, 2019, High aspect ratio β-Ga2O3 fin arrays with low-interface charge density by inverse metal-assisted chemical etching, ACS Nano, 13, 8784, 10.1021/acsnano.9b01709 Kim, 2018, Nanoscale groove textured β-Ga2O3 by room temperature inverse metal-assisted chemical etching and photodiodes with enhanced responsivity, Appl. Phys. Lett., 113, 222104, 10.1063/1.5053219 Koynov, 2006, Black nonreflecting silicon surfaces for solar cells, Appl. Phys. Lett., 88, 203107, 10.1063/1.2204573 Li, 2002, In-plane bandgap control in porous GaN through electroless wet chemical etching, Appl. Phys. Lett., 80, 980, 10.1063/1.1448860 Li, 2000, Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Appl. Phys. Lett., 77, 2572, 10.1063/1.1319191 Lee, 2016, Metal-assisted chemical etching of Ge surface and its effect on photovoltaic devices, Appl. Surf. Sci., 371, 129, 10.1016/j.apsusc.2016.02.197 Kawase, 2012 Ito, 2016, Chemical wet etching of germanium assisted with catalytic-metal-particles and electroless-metal-deposition, Electrochim. Acta, 214, 354, 10.1016/j.electacta.2016.08.016 Chen, 2020, Efficient photon capture on germanium surfaces using industrially feasible nanostructure formation, Nanotechnology, 32, 1 Kawase, 2012, Catalytic behavior of metallic particles in anisotropic etching of Ge (100) surfaces in water mediated by dissolved oxygen, J. Appl. Phys., 111, 126102, 10.1063/1.4730768 Hadjersi, 2004, Metal-assisted chemical etching in HF/Na2S2O8 OR HF/KMnO4 produces porous silicon, Thin Solid Films, 459, 271, 10.1016/j.tsf.2003.12.114 Song, 2017, Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers, Opt. Express, 25, 23862, 10.1364/OE.25.023862 Kim, 2016, Light absorption enhancement in Ge nanomembrane and its optoelectronic application, Opt. Express, 24, 16894, 10.1364/OE.24.016894 D.E. Goldberg, Genetic algorithms in search, Optimization, and MachineLearning, (1989). E.D. Palik, Handbook of optical constants, 1 (1997) 465-478. Zhang, 2019, Improved detectivity of flexible a-InGaZnO UV photodetector via surface fluorine plasma treatment, IEEE Electron Device Lett., 40, 1646, 10.1109/LED.2019.2933503 Brantley, 2008 Mgbenu, 1979, Activation energy for diffusion in Au/Ge thin film couples, Phys. Status Solidi A, 53, 397, 10.1002/pssa.2210530148 Huang, 2011, Metal-assisted chemical etching of silicon: a review: in memory of Prof. Ulrich Gösele, Adv. Mater., 23, 285, 10.1002/adma.201001784 Leung, 2014, Light management with nanostructures for optoelectronic devices, J. Phys. Chem. Lett., 5, 1479, 10.1021/jz500306f Leem, 2011, Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications, Opt. Express, 19, 26308, 10.1364/OE.19.026308 Li, 2011, Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells, Appl. Phys. Lett., 98 Seo, 2020, Low dimensional freestanding semiconductors for flexible optoelectronics: materials, synthesis, process, and applications, Mater. Res. Lett., 8, 123, 10.1080/21663831.2020.1718231 Rogers, 2011, Synthesis, assembly and applications of semiconductor nanomembranes, Nature, 477, 45, 10.1038/nature10381 Kim, 2015, Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film, Appl. Phys. Lett., 106, 212107, 10.1063/1.4922043 Xia, 2017, Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities, Sci. Adv., 3, e1602783, 10.1126/sciadv.1602783