Hoạt động chống cảm ứng quần thể của một số vi khuẩn biển được phân lập từ các nguồn tài nguyên biển khác nhau ở Ai Cập

Biotechnology Letters - Tập 43 - Trang 455-468 - 2020
Najat El-Kurdi1, Hesham Abdulla2, Amro Hanora3
1Department of Aquaculture Biotechnology, Fish Farming and Technology Institute, Suez Canal University, Ismailia, Egypt
2Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
3Department of Microbiology & Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt

Tóm tắt

Nhằm sàng lọc một loạt vi khuẩn biển có hoạt động chống cảm ứng quần thể và chống biofilm. Trong số 188 mẫu vi khuẩn phân lập từ nước, trầm tích và san hô ở khu vực Biển Đỏ, khoảng 35% (65 mẫu vi khuẩn) cho thấy sự phân hủy đáng kể sắc tố tím của chủng sinh học báo cáo mà không ảnh hưởng đến sự phát triển tế bào. Các vi khuẩn quench quần thể thu được từ vi khuẩn liên kết với san hô chiếm 66,2% tổng số mẫu phân lập. Kết quả khuếch đại PCR cho thấy sự ức chế Acyl Homoserine lactone (AHL) được ghi nhận bởi 91% vi khuẩn biển chống QS không phải do hoạt động của lactonase. Mặt khác, các gen lactonase chỉ được ghi nhận ở 9% còn lại (6 mẫu) và thuộc về các chi Bacillus, Nocardiopsis và Enterobacter dựa trên trình tự gen 16S rRNA. Các kết quả cũng cho thấy rằng các vi khuẩn biển có hoạt động chống QS ức chế 67% biofilm hình thành bởi Aeromonas hydrophila, Pseudomonas aeruginosa và Vibrio alginolyticus. Phân tích hồ sơ tính toán xác nhận sự hiện diện của vùng chức năng trong các gen được phát hiện. Các cộng đồng vi khuẩn san hô là nguồn phong phú cho các sản phẩm tự nhiên quan trọng về dược lý có hoạt động chống cảm ứng quần thể và chống biofilm.

Từ khóa

#vi khuẩn biển #cảm ứng quần thể #chống biofilm #Acyl Homoserine lactone #dược lý

Tài liệu tham khảo

Abudoleh SM, Mahasneh AM (2017) Anti-quorum sensing activity of substances isolated from wild berry associated bacteria. Avicenna J Med Biotechnol 9:23–30 Abushaheen MA, Muzaheed FAJ et al (2020) Antimicrobial resistance, mechanisms and its clinical significance. Dis Mon 66:100971. https://doi.org/10.1016/j.disamonth.2020.100971 Arendrup MC, Patterson TF (2017) Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis 216:S445–S451. https://doi.org/10.1093/infdis/jix131 Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005 Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. https://doi.org/10.1093/nar/gku340 Bodini SF, Manfredini S, Epp M et al (2009) Quorum sensing inhibition activity of garlic extract and p-coumaric acid. Lett Appl Microbiol 49:551–555. https://doi.org/10.1111/j.1472-765X.2009.02704.x Busetti A, Shaw G, Megaw J et al (2014) Marine-derived quorum-sensing inhibitory activities enhance the antibacterial efficacy of tobramycin against Pseudomonas aeruginosa. Mar Drugs 13:1–28. https://doi.org/10.3390/md13010001 Cady NC, McKean KA, Behnke J et al (2012) Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS ONE 7(6):e38492. https://doi.org/10.1371/journal.pone.0038492 Cai X, Yu M, Shan H et al (2018) Characterization of a novel N-acylhomoserine lactonase RmmL from Ruegeria mobilis YJ3. Marine Drugs 16:370. https://doi.org/10.3390/md16100370 Choo JH, Rukayadi Y, Hwang J-K (2006) Inhibition of bacterial quorum sensing by vanilla extract. Lett Appl Microbiol 42:637–641. https://doi.org/10.1111/j.1472-765X.2006.01928.x Dadgostar P (2019) Antimicrobial resistance: implications and costs. Infect Drug Resist 12:3903–3910. https://doi.org/10.2147/IDR.S234610 Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433. https://doi.org/10.1128/MMBR.00016-10 Dobretsov S, Teplitski M, Paul V (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–427. https://doi.org/10.1080/08927010902853516 Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531. https://doi.org/10.1073/pnas.060023897 Ehrenreich IM, Waterbury JB, Webb EA (2005) Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl Environ Microbiol 71:7401–7413. https://doi.org/10.1128/AEM.71.11.7401-7413.2005 El Samak M, Solyman SM, Hanora A (2018) Antimicrobial activity of bacteria isolated from Red Sea marine invertebrates. Biotechnol Rep 19:e00275. https://doi.org/10.1016/j.btre.2018.e00275 French GL (2005) Clinical impact and relevance of antibiotic resistance. Adv Drug Deliv Rev 57:1514–1527. https://doi.org/10.1016/j.addr.2005.04.005 Galarion LH, Rivera WL (2016) Isolation and characterization of marine sediment bacteria capable of biocatalyzing bromination of indole. J Sci Ind Res 75:359–364 Golberg K, Pavlov V, Marks RS, Kushmaro A (2013) Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29:669–682. https://doi.org/10.1080/08927014.2013.796939 Haque Md, Rahman Md, Haque Md et al (2016) Antimicrobial and anticancer activities of ethyl acetate extract of co-culture of Streptomyces sp. ANAM-5 and AIAH-10 Isolated from Mangrove Forest of Sundarbans, Bangladesh. J App Pharm Sci. https://doi.org/10.7324/JAPS.2016.60207 Hmelo LR, Mincer TJ, Van Mooy BAS (2011) Possible influence of bacterial quorum sensing on the hydrolysis of sinking particulate organic carbon in marine environments. Environ Microbiol Rep 3:682–688. https://doi.org/10.1111/j.1758-2229.2011.00281.x Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and -lactonase. Open Microbiol J 5:1–13. https://doi.org/10.2174/1874285801105010001 Kumar A, Kumar RR, Sharma BD et al (2015) Identification of species origin of meat and meat products on the DNA basis: a review. Crit Rev Food Sci Nutr 55:1340–1351. https://doi.org/10.1080/10408398.2012.693978 Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054 Lami R (2019) Quorum sensing in marine biofilms and environments. In: Tommonaro G (ed) Quorum sensing. Academic Press, Cambridge, pp 55–96 Liu D, Lepore BW, Petsko GA et al (2005) Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. PNAS 102:11882–11887. https://doi.org/10.1073/pnas.0505255102 Ma Z-P, Song Y, Cai Z-H et al (2018) Anti-quorum sensing activities of selected coral symbiotic bacterial extracts from the South China Sea. Front Cell Infect Microbiol 8:144. https://doi.org/10.3389/fcimb.2018.00144 Maloy SR (1990) Experimental techniques in bacterial genetics. Jones and Bartlett, Boston Morohoshi T, Tominaga Y, Someya N, Ikeda T (2012) Complete genome sequence and characterization of the N-acylhomoserine lactone-degrading gene of the potato leaf-associated Solibacillus silvestris. J Biosci Bioeng 113:20–25. https://doi.org/10.1016/j.jbiosc.2011.09.006 Muras A, López-Pérez M, Mayer C et al (2018) High prevalence of quorum-sensing and quorum-quenching activity among cultivable bacteria and metagenomic sequences in the Mediterranean Sea. Genes 9:100. https://doi.org/10.3390/genes9020100 Ni N, Li M, Wang J, Wang B (2009) Inhibitors and antagonists of bacterial quorum sensing. Med Res Rev 29:65–124. https://doi.org/10.1002/med.20145 Park S-Y, Lee SJ, Oh T-K et al (2003) AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology (Reading, Engl) 149:1541–1550. https://doi.org/10.1099/mic.0.26269-0 Pham TM, Wiese J, Wenzel-Storjohann A, Imhoff JF (2016) Diversity and antimicrobial potential of bacterial isolates associated with the soft coral Alcyonium digitatum from the Baltic Sea. Antonie Van Leeuwenhoek 109:105–119. https://doi.org/10.1007/s10482-015-0613-1 Phelan RW, O’Halloran JA, Kennedy J et al (2012) Diversity and bioactive potential of endospore-forming bacteria cultured from the marine sponge Haliclona simulans. J Appl Microbiol 112:65–78. https://doi.org/10.1111/j.1365-2672.2011.05173.x Pietsch F, O’Neill AJ, Ivask A et al (2020) Selection of resistance by antimicrobial coatings in the healthcare setting. J Hosp Infect. https://doi.org/10.1016/j.jhin.2020.06.006 Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 11:217–218 Rekadwad BN, Khobragade CN (2017) Morphotypes and pigment profiles of halophilic bacteria: practical data useful for novelty, taxonomic categorization and for describing novel species or new taxa. Data Brief 13:609–619. https://doi.org/10.1016/j.dib.2017.06.039 Romero M, Avendaño-Herrera R, Magariños B et al (2010) Acylhomoserine lactone production and degradation by the fish pathogen Tenacibaculum maritimum, a member of the Cytophaga-Flavobacterium-Bacteroides (CFB) group. FEMS Microbiol Lett 304:131–139. https://doi.org/10.1111/j.1574-6968.2009.01889.x Romero M, Martin-Cuadrado A-B, Otero A (2012) Determination of whether quorum quenching is a common activity in marine bacteria by analysis of cultivable bacteria and metagenomic sequences. Appl Environ Microbiol 78:6345–6348. https://doi.org/10.1128/AEM.01266-12 Singh VK, Mishra A, Jha B (2017) Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front Cell Infect Microbiol 7:337. https://doi.org/10.3389/fcimb.2017.00337 Sommer R, Joachim I, Wagner S, Titz A (2013) New approaches to control infections: anti-biofilm strategies against gram-negative bacteria. Chimia (Aarau) 67:286–290. https://doi.org/10.2533/chimia.2013.286 Tang K, Su Y, Brackman G et al (2015) MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia. Appl Environ Microbiol 81:774–782. https://doi.org/10.1128/AEM.02805-14 Vuotto C, Longo F, Balice MP et al (2014) Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens 3:743–758. https://doi.org/10.3390/pathogens3030743 Weiland-Bräuer N, Pinnow N, Schmitz RA (2015) Novel reporter for identification of interference with acyl homoserine lactone and autoinducer-2 quorum sensing. Appl Environ Microbiol 81:1477–1489. https://doi.org/10.1128/AEM.03290-14 Yahia R, Hanora A, Fahmy N, Aly KA (2017) Quorum sensing signal production by sponge-associated bacteria isolated from the Red Sea, Egypt. AJB 16:1688–1698. https://doi.org/10.5897/AJB2017.16078 Yaniv K, Golberg K, Kramarsky-Winter E et al (2017) Functional marine metagenomic screening for anti-quorum sensing and anti-biofilm activity. Biofouling 33:1–13. https://doi.org/10.1080/08927014.2016.1253684 Zhao J, Chen M, Quan CS, Fan SD (2015) Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens. J Fish Dis 38:771–786. https://doi.org/10.1111/jfd.12299 Zhao J, Li X, Hou X et al (2019) Widespread existence of quorum sensing inhibitors in marine bacteria: potential drugs to combat pathogens with novel strategies. Mar Drugs 17:275. https://doi.org/10.3390/md17050275