Anti-freezing flexible aqueous Zn–MnO2 batteries working at −35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte

Journal of Materials Chemistry A - Tập 8 Số 14 - Trang 6828-6841
Minfeng Chen1,2,3,4, Weijun Zhou1,2,3,4, Anran Wang1,2,3,4, Aixiang Huang1,2,3,4, Jizhang Chen1,2,3,4, Junling Xu1,5,6, Ching‐Ping Wong1,5,7,6
1China
2College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
3Nanjing 210037
4Nanjing Forestry University
5Department of Electronic Engineering, The Chinese University of Hong Kong, NT, Hong Kong, China
6The Chinese University of Hong Kong
7School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, USA

Tóm tắt

An anti-freezing gel electrolyte with an ultralow freezing point below −60 °C is developed for assembling high-performance flexible aqueous Zn–MnO2 batteries.

Từ khóa


Tài liệu tham khảo

Wan, 2017, J. Mater. Chem. A, 5, 3819, 10.1039/C6TA04844G

Wan, 2018, Adv. Energy Mater., 8, 1802388, 10.1002/aenm.201802388

Yu, 2019, Small, 15, 1804760, 10.1002/smll.201804760

Li, 2019, Adv. Energy Mater., 9, 1802605, 10.1002/aenm.201802605

Huang, 2019, Chemistry, 25, 14480, 10.1002/chem.201902660

Lu, 2018, ChemSusChem, 11, 3996, 10.1002/cssc.201801657

Hoang, 2017, ACS Sustainable Chem. Eng., 5, 1804, 10.1021/acssuschemeng.6b02553

Hoang, 2017, ChemSusChem, 10, 2816, 10.1002/cssc.201700441

Lu, 2016, J. Ind. Eng. Chem., 42, 101, 10.1016/j.jiec.2016.07.036

Zeng, 2017, Adv. Mater., 29, 1700274, 10.1002/adma.201700274

Wan, 2018, Adv. Funct. Mater., 28, 1804975, 10.1002/adfm.201804975

Sun, 2018, Energy Environ. Sci., 11, 3367, 10.1039/C8EE02567C

Spoljaric, 2014, Eur. Polym. J., 56, 105, 10.1016/j.eurpolymj.2014.03.009

Li, 2018, ACS Nano, 12, 3140, 10.1021/acsnano.7b09003

Huang, 2019, Angew. Chem., Int. Ed., 58, 4313, 10.1002/anie.201814653

Shi, 2017, Polymer, 111, 168, 10.1016/j.polymer.2017.01.051

Lu, 2017, ACS Sustainable Chem. Eng., 5, 948, 10.1021/acssuschemeng.6b02279

Wang, 2018, ACS Appl. Mater. Interfaces, 10, 44527, 10.1021/acsami.8b17607

Li, 2018, Energy Environ. Sci., 11, 941, 10.1039/C7EE03232C

Lu, 2019, ACS Appl. Energy Mater., 2, 6904, 10.1021/acsaem.9b01415

Han, 2018, J. Mater. Chem. A, 6, 23046, 10.1039/C8TA08314B

Zhang, 2019, Small, 15, 1903817, 10.1002/smll.201903817

Zhang, 2018, J. Mater. Chem. A, 6, 12237, 10.1039/C8TA04298E

Huang, 2019, Materials Today Energy, 14, 100349, 10.1016/j.mtener.2019.100349

Zhang, 2019, Nano Lett., 19, 4035, 10.1021/acs.nanolett.9b01403

Mitha, 2019, J. Electroanal. Chem., 836, 1, 10.1016/j.jelechem.2019.01.014

Rong, 2017, Angew. Chem., Int. Ed., 56, 14159, 10.1002/anie.201708614

Rong, 2018, Adv. Energy Mater., 8, 1801967, 10.1002/aenm.201801967

Chen, 2018, Angew. Chem., Int. Ed., 57, 6568, 10.1002/anie.201803366

Han, 2018, Adv. Funct. Mater., 28, 1704195, 10.1002/adfm.201704195

Hu, 2018, ACS Appl. Mater. Interfaces, 10, 44000, 10.1021/acsami.8b15287

Mo, 2019, Energy Environ. Sci., 12, 706, 10.1039/C8EE02892C

Pan, 2018, ACS Biomater. Sci. Eng., 4, 3397, 10.1021/acsbiomaterials.8b00657

Pan, 2016, Nat. Energy, 1, 16039, 10.1038/nenergy.2016.39

Wang, 2018, Small, 14, 1803978, 10.1002/smll.201803978

Chen, 2019, J. Mater. Chem. A, 7, 26524, 10.1039/C9TA10944G

Zhou, 2019, Chemphyschem, 20, 2139, 10.1002/cphc.201900545

Zhang, 2017, Nat. Commun., 8, 405, 10.1038/s41467-017-00467-x

Chao, 2019, Angew. Chem., Int. Ed., 58, 7823, 10.1002/anie.201904174

Fu, 2018, Adv. Energy Mater., 8, 1801445, 10.1002/aenm.201801445

Jin, 2019, Adv. Mater., 31, 1900567, 10.1002/adma.201900567

Fang, 2019, Adv. Funct. Mater., 29, 1808375, 10.1002/adfm.201808375

Nam, 2019, Energy Environ. Sci., 12, 1999, 10.1039/C9EE00718K

Kundu, 2016, Nat. Energy, 1, 16119, 10.1038/nenergy.2016.119

Soundharrajan, 2018, Nano Lett., 18, 2402, 10.1021/acs.nanolett.7b05403

He, 2018, Adv. Energy Mater., 8, 1702463, 10.1002/aenm.201702463

Guo, 2018, Adv. Energy Mater., 8, 1801819, 10.1002/aenm.201801819

Pang, 2018, Adv. Energy Mater., 8, 1800144, 10.1002/aenm.201800144

Chao, 2018, Adv. Mater., 30, 1803181, 10.1002/adma.201803181

Xia, 2018, Angew. Chem., Int. Ed., 57, 3943, 10.1002/anie.201713291

Hu, 2018, Nano Lett., 18, 1758, 10.1021/acs.nanolett.7b04889

Yang, 2018, Energy Environ. Sci., 11, 3157, 10.1039/C8EE01651H

Liu, 2019, Energy Environ. Sci., 12, 2273, 10.1039/C9EE00956F

Ding, 2019, Adv. Mater., 31, 1904369, 10.1002/adma.201904369

Shin, 2019, Adv. Energy Mater., 9, 1900083, 10.1002/aenm.201900083

Kasiri, 2019, Energy Storage Materials, 19, 360, 10.1016/j.ensm.2019.03.006

Xu, 2019, Energy Storage Materials, 16, 527, 10.1016/j.ensm.2018.09.009

Liang, 2019, Nano Lett., 19, 3199, 10.1021/acs.nanolett.9b00697

Wang, 2018, Energy Environ. Sci., 11, 3168, 10.1039/C8EE01883A

Guo, 2018, Angew. Chem., Int. Ed., 57, 11737, 10.1002/anie.201807121

Kundu, 2018, Chem. Mater., 30, 3874, 10.1021/acs.chemmater.8b01317

Huang, 2018, Nat. Commun., 9, 2906, 10.1038/s41467-018-04949-4

Sun, 2017, J. Am. Chem. Soc., 139, 9775, 10.1021/jacs.7b04471

Yang, 2019, Adv. Mater., 31, 1901521, 10.1002/adma.201901521

Geng, 2020, Adv. Funct. Mater., 30, 1907684, 10.1002/adfm.201907684

Bi, 2019, Chemelectrochem, 6, 3933, 10.1002/celc.201900966

Zhang, 2019, Adv. Mater., 31, 1806005, 10.1002/adma.201806005

Pech, 2010, Nat. Nanotechnol., 5, 651, 10.1038/nnano.2010.162

Zhang, 2019, Energy Storage Materials, 21, 154, 10.1016/j.ensm.2018.12.019

Zhao, 2018, Small, 14, 1802320, 10.1002/smll.201802320

He, 2019, Adv. Sci., 6, 1900151, 10.1002/advs.201900151

Wang, 2019, ACS Appl. Mater. Interfaces, 11, 35796, 10.1021/acsami.9b13537

Xu, 2019, Nano Energy, 62, 275, 10.1016/j.nanoen.2019.05.042

Lu, 2016, Appl. Energy, 170, 58, 10.1016/j.apenergy.2016.02.117

Zhao, 2016, Sci. Rep., 6, 25809, 10.1038/srep25809