Anti-fatigue Effect of Ginsenoside Rb1 on Postoperative Fatigue Syndrome Induced by Major Small Intestinal Resection in Rat

Biological and Pharmaceutical Bulletin - Tập 36 Số 10 - Trang 1634-1639 - 2013
Shanjun Tan1, Feng Zhou2, Ning Li1, Qian-Tong Dong2, Xiaodong Zhang2, Xing-Zhao Ye2, Jian Guo2, Bicheng Chen3, Zhen Yu2
1Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University
2Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University
3Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University

Tóm tắt

Từ khóa


Tài liệu tham khảo

1) Sun J, Hu S, Song X. Adjuvant effects of protopanaxadiol and protopanaxatriol saponins from ginseng roots on the immune responses to ovalbumin in mice. <i>Vaccine</i>, 25, 1114–1120 (2007).

2) Shergis JL, Zhang AL, Zhou W, Xue CC. <i>Panax ginseng</i> in randomised controlled trials: a systematic review. <i>Phytother. Res.</i>, 27, 949–965 (2013).

3) Lee HS, Kim MR, Park Y, Park HJ, Chang UJ, Kim SY, Suh HJ. Fermenting red ginseng enhances its safety and efficacy as a novel skin care anti-aging ingredient: <i>in vitro</i> and animal study. <i>J. Med. Food</i>, 15, 1015–1023 (2012).

4) Du J, Cheng B, Zhu X, Ling C. Ginsenoside Rg1, a novel glucocorticoid receptor agonist of plant origin, maintains glucocorticoid efficacy with reduced side effects. <i>J. Immunol.</i>, 187, 942–950 (2011).

5) Barton DL, Soori GS, Bauer BA, Sloan JA, Johnson PA, Figueras C, Duane S, Mattar B, Liu H, Atherton PJ, Christensen B, Loprinzi CL. Pilot study of <i>Panax quinquefolius</i> (American ginseng) to improve cancer-related fatigue: a randomized, double-blind, dose-finding evaluation: NCCTG trial N03CA. <i>Support. Care Cancer</i>, 18, 179–187 (2010).

6) Lü JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. <i>Curr. Vasc. Pharmacol.</i>, 7, 293–302 (2009).

7) Hwang YP, Jeong HG. Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. <i>Toxicol. Appl. Pharmacol.</i>, 242, 18–28 (2010).

8) Ohashi R, Yan S, Mu H, Chai H, Yao Q, Lin PH, Chen C. Effects of homocysteine and ginsenoside Rb1 on endothelial proliferation and superoxide anion production. <i>J. Surg. Res.</i>, 133, 89–94 (2006).

9) Lee SH, Jung BH, Choi SY, Kim SY, Lee EH, Chung BC. Influence of ginsenoside Rb1 on brain neurosteroid during acute immobilization stress. <i>Arch. Pharm. Res.</i>, 29, 566–569 (2006).

10) Rubin GJ, Hardy R, Hotopf M. A systematic review and <i>meta</i>-analysis of the incidence and severity of postoperative fatigue. <i>J. Psychosom. Res.</i>, 57, 317–326 (2004).

11) Zargar-Shoshtari K, Paddison JS, Booth RJ, Hill AG. A prospective study on the influence of a fast-track program on postoperative fatigue and functional recovery after major colonic surgery. <i>J. Surg. Res.</i>, 154, 330–335 (2009).

12) Schroeder D, Hill GL. Postoperative fatigue: a prospective physiological study of patients undergoing major abdominal surgery. <i>Aust. N. Z. J. Surg.</i>, 61, 774–779 (1991).

13) Christensen T, Bendix T, Kehlet H. Fatigue and cardiorespiratory function following abdominal surgery. <i>Br. J. Surg.</i>, 69, 417–419 (1982).

14) Zargar-Shoshtari K, Hill AG. Postoperative fatigue: a review. <i>World J. Surg.</i>, 33, 738–745 (2009).

15) Plank LD, Metzger DJ, Mccall JL, Barclay KL, Gane EJ, Streat SJ, Munn SR, Hill GL. Sequential changes in the metabolic response to orthotopic liver transplantation during the first year after surgery. <i>Ann. Surg.</i>, 234, 245–255 (2001).

16) Kissmeyer-Nielsen P, Jensen MB, Laurberg S. Perioperative growth hormone treatment and functional outcome after major abdominal surgery: a randomized, double-blind, controlled study. <i>Ann. Surg.</i>, 229, 298–302 (1999).

17) Christensen T. Postoperative fatigue. <i>Dan. Med. Bull.</i>, 42, 314–322 (1995).

18) Salmon P, Hall GM. A theory of postoperative fatigue: an interaction of biological, psychological, and social processes. <i>Pharmacol. Biochem. Behav.</i>, 56, 623–628 (1997).

19) Tang W, Zhang Y, Gao J, Ding X, Gao S. The anti-fatigue effect of 20(R)-ginsenoside Rg3 in mice by intranasally administration. <i>Biol. Pharm. Bull.</i>, 31, 2024–2027 (2008).

20) Elam JL, Carpenter JS, Shu XO, Boyapati S, Friedmann-Gilchrist J. Methodological issues in the investigation of ginseng as an intervention for fatigue. <i>Clin. Nurse Spec.</i>, 20, 183–189 (2006).

21) Zhang XD, Chen BC, Dong QT, Andersson R, Pan XD, Tan SJ, Ye XZ, Yao JG, Yu Z. Establishment and assessments of a new model for the postoperative fatigue syndrome by major small intestinal resection in rats. <i>Scand. J. Gastroenterol.</i>, 46, 1302–1309 (2011).

22) Zhang X, Yu Z, Yao J, Chen X, Chen Z, Dong Q. Effects of enteral nutrition combined with panaxoside Rbl on mouse models of postoperative fatigue syndrome. <i>Chinese Journal of Clinical Nutrition</i>, 18, 38–41 (2010).

23) Wang H, Sorenson EJ, Spinner RJ, Windebank AJ. Electrophysiologic findings and grip strength after nerve injuries in the rat forelimb. <i>Muscle Nerve</i>, 38, 1254–1265 (2008).

24) Simon D, Seznec H, Gansmuller A, Carelle N, Weber P, Metzger D, Rustin P, Koenig M, Puccio H. Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. <i>J. Neurosci.</i>, 24, 1987–1995 (2004).

25) Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF, Mandel JL. The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. <i>Proc. Natl. Acad. Sci. U.S.A.</i>, 99, 15060–15065 (2002).

26) Christensen T, Kehlet H. Postoperative fatigue. <i>World J. Surg.</i>, 17, 220–225 (1993).

27) Tan S, Zhou F, Yu Z, Du L, Ye X, Zhang X, Dong Q, Zhang B, Hu L. Study on characteristics of energy metabolism in skeletal muscle of rats with postoperative fatigue syndrome and interventional effect of ginsenoside Rb1. <i>Zhongguo Zhong Yao Za Zhi</i>, 36, 3489–3493 (2011).

28) Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. <i>Physiol. Rev.</i>, 88, 287–332 (2008).

29) Christensen T, Nygaard E, Stage JG, Kehlet H. Skeletal muscle enzyme activities and metabolic substrates during exercise in patients with postoperative fatigue. <i>Br. J. Surg.</i>, 77, 312–315 (1990).

30) Huang LZ, Huang BK, Ye Q, Qin LP. Bioactivity-guided fractionation for anti-fatigue property of <i>Acanthopanax senticosus</i>. <i>J. Ethnopharmacol.</i>, 133, 213–219 (2011).

31) Westerblad H, Allen DG. Cellular mechanisms of skeletal muscle fatigue. <i>Adv. Exp. Med. Biol.</i>, 538, 563–570, discussion, 571 (2003).

32) Medow MS, Aggarwal A, Baugham I, Messer Z, Stewart JM. Modulation of the axon-reflex response to local heat by reactive oxygen species in subjects with chronic fatigue syndrome. <i>J. Appl. Physiol.</i>, 114, 45–51 (2013).

33) Kuwahara H, Horie T, Ishikawa S, Tsuda C, Kawakami S, Noda Y, Kaneko T, Tahara S, Tachibana T, Okabe M, Melki J, Takano R, Toda T, Morikawa D, Nojiri H, Kurosawa H, Shirasawa T, Shimizu T. Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy. <i>Free Radic. Biol. Med.</i>, 48, 1252–1262 (2010).

34) Reid MB. Free radicals and muscle fatigue: of ROS, canaries, and the IOC. <i>Free Radic. Biol. Med.</i>, 44, 169–179 (2008).

35) Chalhoub V, Pottecher J, Asehnoune K, Mazoit JX, Duranteau J, Benhamou D. Cytokine response and reactive oxygen species production after low- and intermediate-risk surgery. <i>Acta Anaesthesiol. Scand.</i>, 55, 549–557 (2011).

36) Kotzampassi K, Kolios G, Manousou P, Kazamias P, Paramythiotis D, Papavramidis TS, Heliadis S, Kouroumalis E, Eleftheriadis E. Oxidative stress due to anesthesia and surgical trauma: importance of early enteral nutrition. <i>Mol. Nutr. Food Res.</i>, 53, 770–779 (2009).

37) Glosli H, Tronstad KJ, Wergedal H, Müller F, Svardal A, Aukrust P, Berge RK, Prydz H. Human TNF-alpha in transgenic mice induces differential changes in redox status and glutathione-regulating enzymes. <i>FASEB J.</i>, 16, 1450–1452 (2002).

38) Zhao H, Li Q, Zhang Z, Pei X, Wang J, Li Y. Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus. <i>Brain Res.</i>, 1256, 111–122 (2009).

39) Kitts DD, Wijewickreme AN, Hu C. Antioxidant properties of a North American ginseng extract. <i>Mol. Cell. Biochem.</i>, 203, 1–10 (2000).

40) Lü JM, Weakley SM, Yang Z, Hu M, Yao Q, Chen C. Ginsenoside Rb1 directly scavenges hydroxyl radical and hypochlorous acid. <i>Curr. Pharm. Des.</i>, 18, 6339–6347 (2012).

41) Chang MS, Lee SG, Rho HM. Transcriptional activation of Cu/Zn superoxide dismutase and catalase genes by panaxadiol ginsenosides extracted from <i>Panax ginseng</i>. <i>Phytother. Res.</i>, 13, 641–644 (1999).

42) Kimura Y, Sumiyoshi M, Kawahira K, Sakanaka M. Effects of ginseng saponins isolated from Red Ginseng roots on burn wound healing in mice. <i>Br. J. Pharmacol.</i>, 148, 860–870 (2006).