Anti-adhesion activity of phytochemicals to prevent Campylobacter jejuni biofilm formation on abiotic surfaces

Anja Klančnik1, Katarina Šimunović1, Meta Sterniša1, Dina Ramić1, Sonja Smole Možina1, Franz Bučar2
1Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
2Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitätsplatz 4, 8010 Graz, Austria

Tóm tắt

AbstractBiofilms provide a protective environment for pathogens such as Campylobacter jejuni, the most prevalent foodborne pathogen, and biofilm formation can enhance bacterial survival in hostile environments. Adhesion of bacteria to the different materials of industrial surfaces is the first step in biofilm formation. Modulation of bacterial adhesion and biofilm formation thus represent important targets in alternative control strategies for reduction of pathogens in food-processing environments. With the high prevalence of C. jejuni and the lack of effective control measures, new control strategies are needed to block adhesion and biofilm formation on food contact surfaces in the food industry, with a focus here on natural antimicrobial phytochemicals. Plants remain a poorly recognized yet vast source of such antimicrobials. Valuable phytochemicals can be obtained directly from plant materials but also from agro-food by-products and waste materials. These materials represent a source of important plant bioactive phytochemicals that are effective for prevention of bacterial adhesion. In this review, we will focus on the anti-adhesion activities of phytochemicals targeted against C. jejuni, on the appropriate methodologies to determine anti-adhesion effects of phytochemicals, on the mechanisms of C. jejuni adhesion, and thus possible targets for reduction and control of this foodborne pathogen in food processing environments.

Từ khóa


Tài liệu tham khảo

Akiba M, Lin J, Barton YW, Zhang Q (2006) Interaction of CmeABC and CmeDEF in conferring antimicrobial resistance and maintaining cell viability in Campylobacter jejuni. J Antimicrob Chemother 57(1):52–60. https://doi.org/10.1093/jac/dki419

Altemimi A, Lakhssassi N, Baharlouei A et al (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel) 6(4):E42. https://doi.org/10.3390/plants6040042

Asakura H, Yamasaki M, Yamamoto S, Igimi S (2007) Deletion of peb4 gene impairs cell adhesion and biofilm formation in Campylobacter jejuni. FEMS Microbiol Lett 275(2):278–285. https://doi.org/10.1111/j.1574-6968.2007.00893.x

Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M et al (2016) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001

Bacanlı M, Aydın S, Başaran AA, Başaran N (2017) Are all phytochemicals useful in the preventing of DNA damage? Food Chem Toxicol 109(Pt1):210–217. https://doi.org/10.1016/j.fct.2017.09.012

Backert S, Hofreuter D (2013) Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods 95(1):8–23. https://doi.org/10.1016/j.mimet.2013.06.031

Bassler BL, Greenberg EP, Stevens AM (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 179(12):4043–4045. https://doi.org/10.1128/jb.179/12.4043-4045.1997

Bezek K, Kurinčič M, Knauder E et al (2016) Attenuation of adhesion, biofilm formation and quorum sensing of Campylobacter jejuni by Euodia ruticarpa. Phytother Res 30(9):1527–1532. https://doi.org/10.1002/ptr.5658

Bohinc K, Dražić G, Fink R et al (2014) Available surface dictates microbial adhesion capacity. Int J Adhes Adhes 50:265–272. https://doi.org/10.1016/j.ijadhadh.2014.01.027

Bolton DJ (2015) Campylobacter virulence and survival factors. Food Microbiol 48:99–108. https://doi.org/10.1016/j.fm.2014.11.017

Bronnec V, Turoňnová H, Bouju A et al (2016) Adhesion, biofilm formation, and genomic features of Campylobacter jejuni Bf, an atypical strain able to grow under aerobic conditions. Front Microbiol 7:1002. https://doi.org/10.3389/fmicb.2016.01002

Cao H, Chai T-T, Wnag X et al (2017) Phytochemicals from fern species: potential for medicine applications. Phytochem Rev 16:379–440. https://doi.org/10.1007/s11101-016

Castillo S, Heredia N, Arechiga-Carvajal E, García S (2014) Citrus extracts as inhibitors of quorum sensing, biofilm formation and motility of Campylobacter jejuni. Food Biotechnol 28(2):106–122. https://doi.org/10.1080/08905436.2014.895947

Castillo S, Heredia N, García S (2015) 2(5H)-Furanone, epigallocatechin gallate, and a citric-based disinfectant disturb quorum-sensing activity and reduce motility and biofilm formation of Campylobacter jejuni. Folia Microbiol (Praha) 60(1):89–95. https://doi.org/10.1007/s12223-014-0344-0

Chae MS, Schraft H (2000) Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. Int J Food Microbiol 62(1–2):103–111. https://doi.org/10.1016/s0168-1605(00)00406-2

Chen L, Teng H, Jia Z et al (2018) Intracellular signaling pathways of inflammation modulated by dietary flavonoids: the most recent evidence. Crit Rev Food Sci Nutr 58(17):2908–2924. https://doi.org/10.1080/10408398.2017.1345853

Christena LR, Subramaniam S, Vidhyalakshmi M et al (2015) Dual role of pinostrobin—a flavonoid nutraceutical as an efflux pump inhibitor and antibiofilm agent to mitigate food borne pathogens. RSC Adv 5:61881–61887. https://doi.org/10.1039/C5RA07165H

Curti V, Di Lorenzo A, Dacrema M et al (2017) In vitro polyphenol effects on apoptosis: an update of literature data. Semin Cancer Biol 46:119–131

de Carvalho CC, de Fonseca MM (2007) Preventing biofilm formation: promoting cell separation with terpenes. FEMS Microbiol Ecol 61(3):406–413. https://doi.org/10.1111/j.1574-6941.2007.00352.x

Duarte A, Alves AC, Ferreira S et al (2015) Resveratrol inclusion complexes: antibacterial and anti-biofilm activity against Campylobacter spp. And Arcobacter butzleri. Food Res Int 77(2):244–250. https://doi.org/10.1016/j.foodres.2015.05.047

Duarte A, Luís Â, Oleastro M, Domingues FC (2016) Antioxidant properties of coriander essential oil and linalool and their potential to control Camplyobacter spp. Food Control 61:115–122. https://doi.org/10.1016/j.foodcont.2015.09.033

Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166. https://doi.org/10.1128/CMR.15.2.155-166.2002

Dwivedi R, Nothaft H, Garber J et al (2016) L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni. Mol Microbiol 101(4):575–589. https://doi.org/10.1111/mmi.13409

EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control) (2018) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J 16(12):5500. https://doi.org/10.2903/j.efsa.2018.5500

EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control) (2019a) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J 17(2):5598. https://doi.org/10.2903/j.efsa.2019.5598

EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control) (2019b) The European Union One Health 2018 Zoonoses Report. EFSA J 17(12):5926. https://doi.org/10.2903/j.efsa.2019.5926

Elvers KT, Park SF (2002) Quorum sensing in Campylobacter jejuni: detection of a luxS encoded signaling molecule. Microbiology 148(Pt5):1475–1481. https://doi.org/10.1099/00221287-148-5-1475

Flemming HC, Wingender J, Szewzyk U et al (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. https://doi.org/10.1038/nrmicro.2016.94

Frirdich E, Biboy J, Pryjma M et al (2019) The Campylobacter jejuni helical to coccoid transition involves changes to peptidoglycan and the ability to elicit an immune response. Mol Microbiol 112(1):280–301. https://doi.org/10.1111/mmi.14269

Gamble R, Muriana PM (2007) Microplate fluorescence assay for measurement of the ability of strains of Listeria monocytogenes from meat and meat-processing plants to adhere to abiotic surfaces. Appl Environ Microbiol 73(16):5235–5244. https://doi.org/10.1128/AEM.00114-07

Giaouris E, Heir E, Desvaux M, Hébraud M et al (2015) Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 6:841. https://doi.org/10.3389/fmicb.2015.00841

Gilbert M, Parker CT, Moran AP (2008) Campylobacter jejuni lipooligosaccharides: structures and biosynthesis. In: Nachamkin I, Szymanski CM, Blaser MJ (eds) Campylobacter, 3rd edn. ASM Press, Washington, DC, pp 483–504. https://doi.org/10.1128/978155581554.ch27

Golding CG, Lamboo LL, Beniac DR, Booth TF (2016) The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep 6:26516. https://doi.org/10.1038/srep26516

Gomes LC, Mergulhão FJ (2017) SEM analysis of surface impact on biofilm antibiotic treatment. Scanning 2017:2960194. https://doi.org/10.1155/2017/2960194

Harvey J, Keenan KP, Gilmour A (2007) Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiol 24(4):380–392. https://doi.org/10.1016/j.fm.2006.06.006

Hazelton PR, Gelderblom HR (2003) Electron microscopy for rapid diagnosis of infectious agents in emergent situations. Emerg Infect Dis 9(3):294–303. https://doi.org/10.3201/eid0903.020327

Hochfellner C, Evangelopoulos D, Zloh M et al (2015) Antagonistic effect of indoloquinazoline aalkaloids on antimycobacterial activity of evocarpine. J Appl Microbiol 118(4):864–872. https://doi.org/10.1111/jam.12753

Hyytiäinen H, Hänninen ML (2012) Quality control strain Campylobacter jejuni ATCC 33560 contains a frameshift mutation in the CmeR regulator. Antimicrobiol Agents Chemother 56(2):1148. https://doi.org/10.1128/AAC.06228-11

Indikova I, Humphrey TJ, Hilbert F (2015) Survival with a helping hand: Campylobacter and microbiota. Front Microbiol 6:1266. https://doi.org/10.3389/fmicb.2015.01266

Jadhav S, Shah R, Bhave M, Palombo EA (2013) Inhibitory activity of yarrow oil on Listeria planktonic cells and biofilms. Food Control 29(1):125–130. https://doi.org/10.1016/j.foodcont.2012.05.071

Jeon B, Itoh K, Misawa N, Ryu S (2003) Effects of quorum sensing on flaA transcription and autoagglutination in Campylobacter jejuni. Microbiol Immunol 47(11):833–839. https://doi.org/10.1111/j.1348-0421.2003.tb03449.x

Jeon B, Muraoka WT, Zhang Q (2010) Advances in Campylobacter biology and implications for biotechnological applications. Microbiol Biotechnol 3(3):242–258. https://doi.org/10.1111/j.1751-7915.2009.00118.x

Joshua GW, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152(Pt2):387–396. https://doi.org/10.1099/mic.0.28358-0

Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM (2015) Global epidemiology of Camplyobacter infection. Clin Microbiol Rev 28(3):687–720. https://doi.org/10.1128/CMR.00006-15

Kalač P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113:9–16. https://doi.org/10.1016/j.foodchem.2008.07.077

Klančnik A, Botteldoorn N, Herman L, Smole Možina S (2006) Survival and stress induced expression of groEL and rpoD of Camyplobacter jejuni from different growth phases. Int J Food Microbiol 112(3):200–207. https://doi.org/10.1016/j.ijfoodmicro.2006.03.015

Klančnik A, Guzej B, Jamnik P et al (2009) Stress response and pathogenic potential of Camplyobacter jejuni cells exposed to starvation. Res Microbiol 160(5):345–352. https://doi.org/10.1016/j.resmic.2009.05.002

Klančnik A, Smole Možina S, Zhang Q (2012) Anti-Campylobacter activities and resistance mechanisms of natural phenolic compounds in Campylobacter. PLoS ONE 7(12):e51800. https://doi.org/10.1371/journal.pone.0051800

Klančnik A, Vučković D, Plankl M et al (2013) In vivo modulation of Campylobacter jejuni virulence in response to environmental stress. Foodborne Pathog Dis 10(6):566–572. https://doi.org/10.1089/fpd.2012.1298

Klančnik A, Vučković D, Jamnik P et al (2014) Stress response and virulence of heat-stressed Camplyobacter jejuni. Microbes Environ 29(4):338–345. https://doi.org/10.1264/jsme2.ME14020

Klančnik A, Megušar P, Sterniša M et al (2017a) Aqueous extracts of wild mushrooms show antimicrobial and antiadhesion activities against bacteria and fungi. Phytother Res 31(12):1971–1976. https://doi.org/10.1002/ptr.5934

Klančnik A, Šikić Pogačar M, Trošt K et al (2017b) Anti-Campylobacter activity of resveratrol and an extract from waste. Pinot noir grape skins and seeds, and resistance of Camp Jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump. J Appl Microbiol 122(1):65–77. https://doi.org/10.1111/jam.13315

Klančnik A, Gobin I, Vučković D et al (2018a) Reduced contamination and infection via inhibition of adhesion of foodborne bacteria to abiotic polystyrene and biotic amoeba surfaces. Int J Food Sci Technol 53:1013–1020. https://doi.org/10.1111/ijfs.13677

Klančnik A, Zorko Š, Toplak N et al (2018b) Antiadhesion activity of juniper (Juniperus communis L.) preparations against Campylobacter jejuni evaluated with PCR-based methods. Phytother Res 32(3):542–550. https://doi.org/10.1002/ptr.6005

Klančnik A, Šimunović K, Kovač J et al (2019) The Anti-Campylobacter activity and mechanisms of pinocembrin action. Microorganisms 7(12):E675. https://doi.org/10.3390/microorganisms7120675

Klemm P, Vejborg RM, Hancock V (2010) Prevention of bacterial adhesion. Appl Microbiol Biotechnol 88(2):451–459. https://doi.org/10.1007/s00253-010-2805-y

Kovač J, Šimunović K, Wu Z et al (2015) Antibiotic resistance modulation and model of action of (-)-α-pinene in Campylobacter jejuni. PLoS ONE 10(4):e0122871. https://doi.org/10.1371/journal.pone.0122871

Kurinčič M, Klančnik A, Smole Možina S (2012) Effects of efflux pump inhibitors on erythromycin, ciprofloxacin, and tetracycline resistance in Campylobacter spp. Isolates. Microbiol Drug Resist 18(5):492–501. https://doi.org/10.1089/mdr.2012.0017

Kurinčič M, Jeršek B, Klančnik A et al (2016) Effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential. Arh Hig Rada Toksikol 67(1):39–45. https://doi.org/10.1515/aiht-2016-67-2720

Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr 3(3):MB-0011. https://doi.org/10.1128/microbiolspec.mb-0011-2014

Lin J, Sahin O, Michel LO, Zhang Q (2003) Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 71(8):4250–4259

Lu X, Al-Qadiri HM, Lin M, Rasco BA (2011) Application of Mid-infrared and Raman spectroscopy to the study of bacteria. Food Bioprocess Technol 4:919–935. https://doi.org/10.1007/s11947-011-0516-8

Lu X, Samuelson DR, RAsco BA, Konkel ME (2012) Antimicrobial effect of diallyl sulphide on Campylobacter jejuni biofilms. J Antimicrob Chemother 67(8):1915–1926. https://doi.org/10.1093/jac/dks138

Lv F, Liang H, Yuan Q, Li C (2011) In vitro antimicrobial effects and mechanisms of action of selected plant essential oil combinations against four food-related microorganisms. Food Res Int 44(9):3057–3064. https://doi.org/10.1016/j-foodres.2011.07.030

McDougald D, Rice SA, Weichart D, Kjelleberg S (1998) Nonculturability: adaptation or debilitation? FEMS Microbiol Ecol 25(1):1–9. https://doi.org/10.1111/j.1574-6941.1998.tb00455.x

Melo RT, Mendonça EP, Monteiro GP et al (2017) Intrisnic and extrinsic aspects on Campylobacter jejuni biofilms. Fron Microbiol 8:1332. https://doi.org/10.3389/fmicb.2017.01332

Meng X, Li D, Zhou D et al (2016) Chemical composition, antibacterial activity and related mechanism of the essential oil from the leaves of Juniperus rigida Sieb. Et Zucc against Klebsiella pneumoniae. J Ethnopharmacol 194:698–705. https://doi.org/10.1016/j.jep.2016.10.050

Moe KK, Mimura J, Ohnishi T et al (2010) The mode of biofilm formation on smooth surfaces by Campylobacter jejuni. J Vet Med Sci 72(4):411–416. https://doi.org/10.1292/jvms.09-0339

Muraoka WT, Zhang Q (2011) Phenotypic and genotypic evidence for L-fucose utilization by Campylobacter jejuni. J Bacteriol 193(5):1065–1075. https://doi.org/10.1128/JB.01252-10

Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661. https://doi.org/10.1021/acs.jnatprod.5b01055

Nguyen VT, Turner MS, Dykes GA (2011) Influence of cell surface hydrophobicity on attachment of Campylobacter to abiotic surfaces. Food Microbiol 28(5):942–950. https://doi.org/10.1016/j.fm.2011.01.004

Nguyen VT, Fegan N, Turner MS, Dykes GA (2012) Role of attachment to surfaces on the prevalence and survival of Campylobacter through food systems. J Food Prot 75(1):195–206. https://doi.org/10.4315/0362-028X.JFP-11-012

O’Neill J (2016) Tackling drug-resistant infections globally: final report and recommendations. http://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf. Accessed 20 Dec 2019

Oh E, Andrews KJ, Jeon B (2018) Enhanced biofilm formation by ferrous and ferric iron through oxidative stress in Campylobacter jejuni. Front Microbiol 9:1204. https://doi.org/10.3389/fmicb.2018.01204

Pan X, Bligh SW, Smith E (2014) Quinolone alkaloids from Fructus Euodiae show activity against methicillin-resistant Staphylococcus aureus. Phytother Res 28(2):305–307. https://doi.org/10.1002/ptr.4987

Park SF (2002) The physiology of Campylobacter species and its relevance to their role as food borne pathogens. Int J Food Microbiol 74(3):177–188. https://doi.org/10.1016/S0168-1605(01)00678-X

Parkhill J, Wren B, Mungall K et al (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668. https://doi.org/10.1038/35001088

Petrovska BB (2012) Historical review of medicinal plants’ usage. Pharmacogn Rev 6(11):1–5. https://doi.org/10.4103/0973-7847.95849

Plummer PJ (2012) LuxS and quorum-sensing in Campylobacter. Front Cell Infect Microbiol 2:22. https://doi.org/10.3389/fcimb.2012.00022

Reeser RJ, Medler RT, Billington SJ et al (2007) Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl Environ Microbiol 73(6):1908–1913. https://doi.org/10.1128/AEM.00740-06

Reuter M, Mallett A, Pearson BM, van Vliet AHM (2010) Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl Environ Microbiol 76(7):2122–2128. https://doi.org/10.1128/AEM.01878-09

Rollins DM, Colwell RR (1986) Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol 52(3):531–538

Rovira J, Cencic A, Santos EM, Jakobsen M (2006) Biological hazards. In: Luning PA, Devlieghere F, Verhe R (eds) Safety in the agrifood chain. Wageningen Academic Publishers, Wageningen, pp 67–143

Schluter J, Nadell CD, Bassler BL, Foster KR (2015) Adhesion as a weapon in microbial competition. ISME J 9:139–149. https://doi.org/10.1038/ismej.2014.174

Schmidt A-M, Escher U, Mousavi S et al (2019) Immunopathological properties of the Campylobacter jejuni flagellins and the adhesion CadF as assessed in a clinical murine infection model. Gut Pathog 11:24. https://doi.org/10.1186/s13099-019-0306-9

Shirai H, Datta AK, Oshita S (2017) Penetration of aerobic bacteria into meat: a mechanistic understanding. J Food Eng 196:193–207. https://doi.org/10.1016/j.foodeng.2016.10.012

Shrestha S, Wagle BR, Upadhyay A et al (2019) Edible coatings fortified with carvacrol reduce Campylobacter jejuni on chicken winglettes and modulate expression of select virulence genes. Front Microbiol 10:583. https://doi.org/10.3389/fmicb.2019.00583

Šikić Pogačar M, Klančnik A, Bucar F et al (2015) Alpinia katsumadai extracts inhibit adhesion and invasion of Campylobacter jejuni in animal and human foetal small intestine cell lines. Phytother Res 29:1585–1589. https://doi.org/10.1002/ptr.5396

Šikić Pogačar M, Klančnik A, Bucar F et al (2016) Anti-adhesion activity of thyme (Thymus vulgaris L.) extract, thyme post-distillation waste, and olive (Olea europea L.) leaf extract against Campylobacter jejuni on polystyrene and intestine epithelial cells. J Sci Food Agric 96(8):2723–2730. https://doi.org/10.1002/jsfa.7391

Šimunović K, Ramić D, Xu C, Smole Možina S (2020) Modulation of Campylobacter jejuni motility, adhesion to polystyrene surfaces, and invasion of INT407 cells by quorum sensing inhibition. Microorganisms 8(1):e104. https://doi.org/10.3390/microorganisms8010104

Singh D, Chaudhuri PK (2018) A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind Crops Prod 18:367–382. https://doi.org/10.1016/j.indcrop.2018.03.048

Smole Možina S, Kurinčič M, Klančnik A, Mavri A (2011) Campylobacter and its multi-resistance in the food chain. Trends Food Sci Technol 22(2–3):91–98. https://doi.org/10.1016/j.tifs.2010.09.003

Sterniša M, Klančnik A, Smole Možina S (2019) Spoilage pseudomonas biofilm with Escherichia coli protection in fish meat at 5 °C. J Sci Food Agric 99(10):4635–4641. https://doi.org/10.1002/jsfa.9703

Sulaeman S, Hernould M, Schaumann A et al (2012) Enhanced adhesion of Campylobacter jejuni to abiotic surfaces is mediated by membrane proteins in oxygen-enriched conditions. PLoS ONE 7(9):e46402. https://doi.org/10.1371/jounal.pone.0046402

Svensson SL, Pryjma M, Gaynor EC (2014) Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni. PLoS ONE 9(8):e106063. https://doi.org/10.1371/journal.pone.0106063

Szymanski CM, Gaynor EC (2012) How sugary bug gets through the day: recent developments in understanding fundamental processes impacting Campylobacter jejuni pathogenesis. Gut Microbes 3(2):135–144. https://doi.org/10.4161/gmic.19488

Teh AH, Lee SM, Dykes GA (2014) Does Campylobacter jejuni form biofilm in food-related environments? Appl Environ Microbiol 80(17):5154–5160. https://doi.org/10.1128/AEM.01493-14

Toplak N, Kovač M, Piskernik S et al (2012) Detection and quantification of Campylobacter jejuni and Campylobacter coli using real-time multiplex PCR. J Appl Microbiol 112(4):752–764. https://doi.org/10.1111/j.1365-2672.2012.05235.x

Trošt K, Klančnik A, Mozetič Vodopivec B et al (2016) Polyphenol, antioxidant and antimicrobial potential of six different white and red wine grape processing leftovers. J Sci Food Agric 96(14):4809–4820. https://doi.org/10.1002/jsfa.7981

Upadhyay A, Arsi K, Wagle BR et al (2017) Trans-cinnamaldehyde, carvacrol, and eugenol reduce Campylobacter jejuni colonization factors and expression of virulence genes in vitro. Front Microbiol 8:713. https://doi.org/10.3389/fmicb.2017.00713

Upadhyay A, Arsi K, Upadhyay I et al (2019) Natural and environmentally friendly strategies for controlling Campylobacter jejuni colonization in poultry, survival in poultry products and infection in humans. In: Venkitanarayanan K, Thakur S, Ricke S (eds) Food safety in poultry meat production. Springer, Cham, pp 67–93. https://doi.org/10.1007/978-3-030-05011-5_4

Vesterlund S, Paltta J, Karp M, Ouwehand AC (2005) Measurement of bacterial adhesion—in vitro evaluation of different methods. J Microbiol Methods 60(2):225–233. https://doi.org/10.1016/j.mimet.2004.09.013

Vinayagam R, Xiao J, Xu B (2017) An insight into anti-diabetic properties of dietary phytochemical. Phytochem Rev 16(3):535–553. https://doi.org/10.1007/s1101-017-9496-2

Wagle BR, Upadhyay A, Upadhyaya I et al (2019) Trans-cinnamaldehyde, eugenol and carvacrol reduce Campylobacter jejuni biofilms and modulate expression of selected genes and proteins. Front Microbiol 10:1837. https://doi.org/10.3389/fmicb.2019.01837

Wang XX, Zan K, Shi SP et al (2013) Quinolone alkaloids with antibacterial and cytotoxic activities from the fruits of Evodia rutaecarpa. Fitoterapia 89:1–7. https://doi.org/10.1016/j.fitote.2013.04.007

Wang XM, Zhang J, Wu LH et al (2014) A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem 151:279–285. https://doi.org/10.1016/j.foodchem.2013.11.062

Winkelströter LK, Teixeira FB, Silva EP et al (2014) Unraveling microbial biofilms of importance for food microbiology. Microbiol Ecol 68(1):35–46. https://doi.org/10.1007/s00248-013-0347-4

World Health Organization (2015) Global action plan on antimicrobial resistance. WHO, Geneva

World Health Organization (2019) WHO global report on traditional and complementary medicine 2019. Geneva, WHO: ISBN 978-92-4-151543-6

Yang P, Song H, Wang L, Jing H (2019) Characterization of key aroma-active compounds in black garlic by sensory-directed flavor analysis. J Agric Food Chem 67(28):7926–7934. https://doi.org/10.1021/acs.jafc.9b03269

Yin R, Kuo H-C, Hudlikar R et al (2019) Gut microbiota, dietary phytochemicals, and benefits to human health. Curr Pharmacol Rep 5(5):332–344. https://doi.org/10.1007/s40495-019-00196-3

Zhao C, Wu Y, Liu X et al (2017) Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides. Trends Food Sci Tech 66:135–145. https://doi.org/10.1016/j.tifs.2017.06.008