Anti-TNF-α therapies: the next generation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA 72, 3666–3670 (1975).
Wiemann, B. & Starnes, C. O. Coley's toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol. Ther. 64, 529–564 (1994).
Kawakami, M. & Cerami, A. Studies of endotoxin-induced decrease in lipoprotein lipase activity. J. Exp. Med. 154, 631–639 (1981).
Beutler, B., Mahoney, J., Le Trang, N., Pekala, P. & Cerami, A. Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J. Exp. Med. 161, 984–995 (1985). References 1 and 4 are the original articles describing the anti-tumour activity of TNF and cachectin.
Beutler, B. et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316, 552–554 (1985).
Pennica, D., Hayflick, J. S., Bringman, T. S., Palladino, M. A. & Goeddel, D. V. Cloning and expression in Escherichia coli of the cDNA for murine tumor necrosis factor. Proc. Natl Acad. Sci. USA 82, 6060–6064 (1985).
Pennica, D. et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312, 724–729 (1984). This manuscript describes the cloning of complementary DNA for human TNF-α.
Kriegler, M., Perez, C., DeFay, K., Albert, I. & Lu, S. D. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53, 45–53 (1988).
Alexopoulou, L., Pasparakis, M. & Kollias, G. A murine transmembrane tumor necrosis factor (TNF) transgene induces arthritis by cooperative p55/p75 TNF receptor signaling. Eur. J. Immunol. 27, 2588–2592 (1997).
Kusters, S. et al. In vivo evidence for a functional role of both tumor necrosis factor (TNF) receptors and transmembrane TNF in experimental hepatitis. Eur. J. Immunol. 27, 2870–2875 (1997).
Josephs, M. D. et al. Lipopolysaccharide and d-galactosamine-induced hepatic injury is mediated by TNF-α and not by Fas ligand. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R1196–R1201 (2000).
Moss, M. L. et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature 385, 733–736 (1997).
Peschon, J. J. et al. An essential role for ectodomain shedding in mammalian development. Science 282, 1281–1284 (1998).
Evans, T. J. et al. Protective effect of 55- but not 75-kD soluble tumor necrosis factor receptor–immunoglobulin G fusion proteins in an animal model of gram-negative sepsis. J. Exp. Med. 180, 2173–2179 (1994).
Grell, M., Wajant, H., Zimmermann, G. & Scheurich, P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc. Natl Acad. Sci. USA 95, 570–575 (1998).
Tartaglia, L. A., Pennica, D. & Goeddel, D. V. Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J. Biol. Chem. 268, 18542–18548 (1993).
Grell, M., Becke, F. M., Wajant, H., Mannel, D. N. & Scheurich, P. TNF receptor type 2 mediates thymocyte proliferation independently of TNF receptor type 1. Eur. J. Immunol. 28, 257–263 (1998).
Alexander-Miller, M. A., Derby, M. A., Sarin, A., Henkart, P. A. & Berzofsky, J. A. Supraoptimal peptide-major histocompatibility complex causes a decrease in bc1-2 levels and allows tumor necrosis factor α receptor II-mediated apoptosis of cytotoxic T lymphocytes. J. Exp. Med. 188, 1391–1399 (1998).
Zheng, L. et al. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377, 348–351 (1995).
Van Zee, K. J. et al. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor α in vitro and in vivo. Proc. Natl Acad. Sci. USA 89, 4845–4849 (1992).
Seckinger, P., Isaaz, S. & Dayer, J. M. A human inhibitor of tumor necrosis factor α. J. Exp. Med. 167, 1511–1516 (1988).
Engelmann, H., Aderka, D., Rubinstein, M., Rotman, D. & Wallach, D. A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J. Biol. Chem. 264, 11974–11980 (1989).
Olsson, I. et al. Isolation and characterization of a tumor necrosis factor binding protein from urine. Eur. J. Haematol. 42, 270–275 (1989). Reference 20–23 are the original descriptions of the TNF-receptor-binding proteins.
Douni, E. et al. Transgenic and knockout analyses of the role of TNF in immune regulation and disease pathogenesis. J. Inflamm. 47, 27–38 (1995).
Douni, E. & Kollias, G. A critical role of the p75 tumor necrosis factor receptor (p75TNF-R) in organ inflammation independent of TNF, lymphotoxin α, or the p55TNF-R. J. Exp. Med. 188, 1343–1352 (1998).
Butler, D. M. et al. DBA/1 mice expressing the human TNF-α transgene develop a severe, erosive arthritis: characterization of the cytokine cascade and cellular composition. J. Immunol. 159, 2867–2876 (1997).
Mussener, A., Litton, M. J., Lindroos, E. & Klareskog, L. Cytokine production in synovial tissue of mice with collagen-induced arthritis (CIA). Clin. Exp. Immunol. 107, 485–493 (1997).
van den Berg, W. B. Uncoupling of inflammatory and destructive mechanisms in arthritis. Semin. Arthritis Rheum. 30, 7–16 (2001).
Haralambous, S., Plows, D., Kollias, G. Attenuation of transgenic TNF triggered arthritis in IL-1R deficient mice. Europ. Cytokine Netw. (abstract) 9, 408 (1998).
Joosten, L. A. et al. IL-1α β-blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-α blockade only ameliorates joint inflammation. J. Immunol. 163, 5049–5055 (1999).
Probert, L., Plows, D., Kontogeorgos, G. & Kollias, G. The type I interleukin-1 receptor acts in series with tumor necrosis factor (TNF) to induce arthritis in TNF-transgenic mice. Eur. J. Immunol. 25, 1794–1797 (1995).
Di Giovine, F. S., Nuki, G. & Duff, G. W. Tumour necrosis factor in synovial exudates. Ann. Rheum. Dis. 47, 768–772 (1988).
Buchan, G. et al. Interleukin-1 and tumour necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-1α. Clin. Exp. Immunol. 73, 449–455 (1988).
Saxne, T., Palladino, M. A., Jr., Heinegard, D., Talal, N. & Wollheim, F. A. Detection of tumor necrosis factor α but not tumor necrosis factor β in rheumatoid arthritis synovial fluid and serum. Arthritis Rheum. 31, 1041–1045 (1988). References 32–34 describe the presence of TNF-α in rheumatoid arthritis synovial fluid and serum.
Taylor, P. C. Anti-TNF-α therapy for rheumatoid arthritis: an update. Intern. Med. 42, 15–20 (2003).
Christen, U., Thuerkauf, R., Stevens, R. & Lesslauer, W. Immune response to a recombinant human TNFR55–IgG1 fusion protein: auto-antibodies in rheumatoid arthritis (RA) and multiple sclerosis (MS) patients have neither neutralizing nor agonist activities. Hum. Immunol. 60, 774–790 (1999).
Baecklund, E., Ekbom, A., Sparen, P., Feltelius, N. & Klareskog, L. Disease activity and risk of lymphoma in patients with rheumatoid arthritis: nested case-control study. BMJ 317, 180–181 (1998).
Baecklund, E. et al. Lymphoma subtypes in patients with rheumatoid arthritis: increased proportion of diffuse large B cell lymphoma. Arthritis Rheum. 48, 1543–1550 (2003).
Ekstrom, K. et al. Risk of malignant lymphomas in patients with rheumatoid arthritis and in their first-degree relatives. Arthritis Rheum. 48, 963–970 (2003). References 37–39 describe the potential risks associated with RA and anti-TNF therapies.
Thalidomide approved. Posit. Aware 9, 16 (1998).
Rajkumar, S. V. et al. Thalidomide in the treatment of relapsed multiple myeloma. Mayo Clin. Proc. 75, 897–901 (2000).
Rajkumar, S. V. & Witzig, T. E. A review of angiogenesis and antiangiogenic therapy with thalidomide in multiple myeloma. Cancer Treat. Rev. 26, 351–362 (2000).
Rajkumar, S. V. Thalidomide in multiple myeloma. Oncology (Huntingt.) 14, 11–16 (2000).
Rajkumar, S. V. et al. Thalidomide for previously untreated indolent or smoldering multiple myeloma. Leukemia 15, 1274–1276 (2001).
Rajkumar, S. V. Current status of thalidomide in the treatment of cancer. Oncology (Huntingt.) 15, 867–874; discussion 877–879 (2001).
Nau, H. Species differences in pharmacokinetics and drug teratogenesis. Environ. Health Perspect. 70, 113–129 (1986).
Neubert, R., Hinz, N., Thiel, R. & Neubert, D. Down-regulation of adhesion receptors on cells of primate embryos as a probable mechanism of the teratogenic action of thalidomide. Life Sci. 58, 295–316 (1996).
Neubert, D., Heger, W., Merker, H. J., Sames, K. & Meister, R. Embryotoxic effects of thalidomide derivatives in the non-human primate Callithrix jacchus. II. Elucidation of the susceptible period and of the variability of embryonic stages. Arch. Toxicol. 61, 180–191 (1988).
Klug, S. et al. Embryotoxic effects of thalidomide derivatives in the non-human primate Callithrix jacchus. 5. Lack of teratogenic effects of phthalimidophthalmide. Arch. Toxicol. 68, 203–205 (1994).
Dredge, K. et al. Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased Th1-type immunity. J. Immunol. 168, 4914–4919 (2002).
Dredge, K. et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br. J. Cancer 87, 1166–1172 (2002).
Marriott, J. B. et al. A novel subclass of thalidomide analogue with anti-solid tumor activity in which caspase-dependent apoptosis is associated with altered expression of bcl-2 family proteins. Cancer Res. 63, 593–599 (2003).
Dredge, K., Marriott, J. B. & Dalgleish, A. G. Immunological effects of thalidomide and its chemical and functional analogs. Crit. Rev. Immunol. 22, 425–437 (2002).
Dredge, K., Dalgleish, A. G. & Marriott, J. B. Thalidomide analogs as emerging anti-cancer drugs. Anticancer Drugs 14, 331–335 (2003).
Burnouf, C. & Pruniaux, M. P. Recent advances in PDE4 inhibitors as immunoregulators and anti-inflammatory drugs. Curr. Pharm. Des. 8, 1255–1296 (2002).
Barnette, M. S. Phosphodiesterase 4 (PDE4) inhibitors in asthma and chronic obstructive pulmonary disease (COPD). Prog. Drug. Res. 53, 193–229 (1999).
Giembycz, M. A. Development status of second generation PDE4 inhibitors for asthma and COPD: the story so far. Monaldi. Arch. Chest Dis. 57, 48–64 (2002).
Han, J., Lee, J. D., Tobias, P. S. & Ulevitch, R. J. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J. Biol. Chem. 268, 25009–25014 (1993).
Haddad, J. J. VX-745. Vertex Pharmaceuticals. Curr. Opin. Investig. Drugs 2, 1070–1076 (2001).
Rasmussen, H. S. & McCann, P. P. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol. Ther. 75, 69–75 (1997).
Tsuji, F. et al. Differential effects between marimastat, a TNF-α converting enzyme inhibitor, and anti-TNF-α antibody on murine models for sepsis and arthritis. Cytokine 17, 294–300 (2002).
Roff, M. et al. Role of IκBα ubiquitination in signal-induced activation of NFκB in vivo. J. Biol. Chem. 271, 7844–7850 (1996).
Sen, R. & Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705–716 (1986).
Birbach, A. et al. Signaling molecules of the NF-κB pathway shuttle constitutively between cytoplasm and nucleus. J. Biol. Chem. 277, 10842–10851 (2002).
O'Connell, M. A., Bennett, B. L., Mercurio, F., Manning, A. M. & Mackman, N. Role of IKK1 and IKK2 in lipopolysaccharide signaling in human monocytic cells. J. Biol. Chem. 273, 30410–30414 (1998).
Lin, H., Chen, C. & Chen, B. D. Resistance of bone marrow-derived macrophages to apoptosis is associated with the expression of X-linked inhibitor of apoptosis protein in primary cultures of bone marrow cells. Biochem. J. 353, 299–306 (2001).
Adams, J. Preclinical development of velcade (bortezomib; formerly PS-341) for multiple myeloma. Eur. J. Haematol. 70, 265 (2003).
Twombly, R. First proteasome inhibitor approved for multiple myeloma. J. Natl Cancer Inst. 95, 845 (2003).
Lee, J. H., Koo, T. H., Hwang, B. Y. & Lee, J. J. Kaurane diterpene, kamebakaurin, inhibits NF-κB by directly targeting the DNA-binding activity of p50 and blocks the expression of antiapoptotic NF-κB target genes. J. Biol. Chem. 277, 18411–18420 (2002).
Hwang, B. Y. et al. Kaurane diterpenes from Isodon japonicus inhibit nitric oxide and prostaglandin E2 production and NF-κB activation in LPS-stimulated macrophage RAW264.7 cells. Planta Med. 67, 406–410 (2001).
Posadas, I. et al. Inhibition of the NF-κB signaling pathway mediates the anti-inflammatory effects of petrosaspongiolide M. Biochem. Pharmacol. 65, 887–895 (2003).
Hehner, S. P. et al. Sesquiterpene lactones specifically inhibit activation of NF-κB by preventing the degradation of IκB-α and IκB-β. J. Biol. Chem. 273, 1288–1297 (1998).
Sheehan, M. et al. Parthenolide, an inhibitor of the nuclear factor-κB pathway, ameliorates cardiovascular derangement and outcome in endotoxic shock in rodents. Mol. Pharmacol. 61, 953–963 (2002).
Kwok, B. H., Koh, B., Ndubuisi, M. I., Elofsson, M. & Crews, C. M. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IκB kinase. Chem. Biol. 8, 759–766 (2001).
Kim, E. J. et al. Suppression by a sesquiterpene lactone from Carpesium divaricatum of inducible nitric oxide synthase by inhibiting nuclear factor-κB activation. Biochem. Pharmacol. 61, 903–910 (2001). References 70–76 are representative articles describing natural product anti-inflammatory molecules.
Singh, S., Natarajan, K. & Aggarwal, B. B. Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is a potent inhibitor of nuclear transcription factor-κB activation by diverse agents. J. Immunol. 157, 4412–4420 (1996).
Lange, R. W., Hayden, P. J., Chignell, C. F. & Luster, M. I. Anthralin stimulates keratinocyte-derived proinflammatory cytokines via generation of reactive oxygen species. Inflamm. Res. 47, 174–181 (1998).
Simeonova, P. P. & Luster, M. I. Iron and reactive oxygen species in the asbestos-induced tumor necrosis factor-α response from alveolar macrophages. Am. J. Respir. Cell. Mol. Biol. 12, 676–683 (1995).
Burke, J. R. et al. BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J. Biol. Chem. 278, 1450–1456 (2003).
Manna, S. K., Bueso-Ramos, C., Alvarado, F. & Aggarwal, B. B. Calagualine inhibits nuclear transcription factors-κB activated by various inflammatory and tumor promoting agents. Cancer Lett. 190, 171–182 (2003).
Han, J., Thompson, P. & Beutler, B. Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway. J. Exp. Med. 172, 391–394 (1990).
Dixon, T. C., Meselson, M., Guillemin, J. & Hanna, P. C. Anthrax. N. Engl. J. Med. 341, 815–826 (1999).
Guidi-Rontani, C. The alveolar macrophage: the Trojan horse of Bacillus anthracis. Trends Microbiol. 10, 405–409 (2002).
Hanna, P. C., Acosta, D. & Collier, R. J. On the role of macrophages in anthrax. Proc. Natl Acad. Sci. USA 90, 10198–10201 (1993).
Bradley, K. A., Mogridge, J., Mourez, M., Collier, R. J. & Young, J. A. Identification of the cellular receptor for anthrax toxin. Nature 414, 225–229 (2001).
Petosa, C., Collier, R. J., Klimpel, K. R., Leppla, S. H. & Liddington, R. C. Crystal structure of the anthrax toxin protective antigen. Nature 385, 833–838 (1997).
Leppla, S. H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl Acad. Sci. USA 79, 3162–3166 (1982).
Duesbery, N. S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734–737 (1998).
Park, J. M., Greten, F. R., Li, Z. W. & Karin, M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297, 2048–2051 (2002).
Vitale, G., Bernardi, L., Napolitani, G., Mock, M. & Montecucco, C. Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem. J. 352, 739–745 (2000).
Vitale, G. et al. Anthrax lethal factor cleaves the N-terminus of MAPKKS and induces tyrosine/threonine phosphorylation of MAPKS in cultured macrophages. J. Appl. Microbiol. 87, 288 (1999).
Pellizzari, R., Guidi-Rontani, C., Vitale, G., Mock, M. & Montecucco, C. Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNγ-induced release of NO and TNF-α. FEBS Lett. 462, 199–204 (1999).
Tang, G. & Leppla, S. H. Proteasome activity is required for anthrax lethal toxin to kill macrophages. Infect. Immun. 67, 3055–3060 (1999).
Amir, R., Ciechanover, A. & Cohen, S. The ubiquitin-proteasome system: the relationship between protein degradation and human diseases. Harefuah 140, 1172–1176, 1229 (2001).
Friedlander, A. M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261, 7123–7126 (1986).
Roberts, J. E., Watters, J. W., Ballard, J. D. & Dietrich, W. F. Ltx1, a mouse locus that influences the susceptibility of macrophages to cytolysis caused by intoxication with Bacillus anthracis lethal factor, maps to chromosome 11. Mol. Microbiol. 29, 581–591 (1998).
Welkos, S. L. & Friedlander, A. M. Pathogenesis and genetic control of resistance to the Sterne strain of Bacillus anthracis. Microb. Pathog. 4, 53–69 (1988).
Welkos, S. L., Keener, T. J. & Gibbs, P. H. Differences in susceptibility of inbred mice to Bacillus anthracis. Infect. Immun. 51, 795–800 (1986).
Welkos, S. L. & Friedlander, A. M. Comparative safety and efficacy against Bacillus anthracis of protective antigen and live vaccines in mice. Microb. Pathog. 5, 127–139 (1988).
Watters, J. W., Dewar, K., Lehoczky, J., Boyartchuk, V. & Dietrich, W. F. Kif1C, a kinesin-like motor protein, mediates mouse macrophage resistance to anthrax lethal factor. Curr. Biol. 11, 1503–1511 (2001).