Anthropogenic records in a fluvial depositional system: The Odra River along The Czech-Polish border
Tài liệu tham khảo
Álvarez-Vázquez, 2020, Separation of geochemical signals in fluvial sediments: new approaches to grain-size control and anthropogenic contamination, Appl. Geochem., 123, 104791, 10.1016/j.apgeochem.2020.104791
Andrade, 2017, Chronology of anthropogenic impacts reconstructed from sediment records of trace metals and Pb isotopes in Todos os Santos Bay (NE Brazil), Mar. Pollut. Bull., 125, 459, 10.1016/j.marpolbul.2017.07.053
Bábek, 2015, Geochemical background in polluted river sediments: How to separate the effects of sediment provenance and grain size with statistical rigour?, Catena, 135, 240, 10.1016/j.catena.2015.07.003
Birch, 2017, Determination of sediment metal background concentrations and enrichment in marine environments - A critical review, Sci. Total Environ., 580, 813, 10.1016/j.scitotenv.2016.12.028
Bouchez, 2011, Grain size control of river suspended sediment geochemistry: clues from Amazon River depth profiles, Geochem. Geophys. Geosyst., 12, 3, 10.1029/2010GC003380
Carballeira, 2000, Regional-scale monitoring of coastal contamination. Nutrients and heavy metals in estuarine sediments and organisms on the coast of Galicia (northwest Spain), Int. J. Environ. Pollut., 13, 534, 10.1504/IJEP.2000.002333
Chartin, 2013, Tracking the early dispersion of contaminated sediment along rivers draining the Fukushima radioactive pollution plume, Anthropocene., 1, 23, 10.1016/j.ancene.2013.07.001
Chen, 2014, Anthropophile elements in river sediments: overview from the Seine River, France, Geochem. Geophys. Geosyst., 15, 4526, 10.1002/2014GC005516
Chudaničová, 2016, Environmental magnetism as a dating proxy for recent overbank sediments of (peri-)industrial regions in the Czech Republic and UK, Catena, 142, 21, 10.1016/j.catena.2016.02.008
Ciszewski, 2015, Human-induced sedimentation patterns of a channelized lowland river, Earth Surf. Process. Landf., 40, 783, 10.1002/esp.3686
Ciszewski, 2016, A review of flood-related storage and remobilization of heavy metal pollutants in river systems, Water Air Soil Pollut., 227, 7, 10.1007/s11270-016-2934-8
Ciszewski, 2009, Storage of sediment-associated heavy metals along the channelized Odra River, Poland, Earth Surf. Process. Landf., 34, 558, 10.1002/esp.1756
Covelli, 1997, Application of a normalization procedure in determining regional geochemical baselines, Environ. Geol., 30, 34, 10.1007/s002540050130
Crutzen, 2002, Geology of mankind, Nature, 415, 23, 10.1038/415023a
Czajka, 2005, Accumulation of sediments within the channelized reach of the Upper Odra River, Poland, Geomorphol. Processes Human Impacts River Basins, 299, 191
Czajka, 2016, Anthropogenic influences on the morphodynamics of the upper Odra channel, Environ. Soc. Eco. Stud., 4, 43, 10.1515/environ-2016-0011
Dean, 2014, Is there an isotopic signature of the Anthropocene?, Anthropocene Rev., 1, 276, 10.1177/2053019614541631
Faměra, 2013, Distribution of heavy-metal contamination in regulated river-channel deposits: a magnetic susceptibility and grain-size approach; River Morava, Czech Republic, Water Air Soil Pollut., 224, 1525, 10.1007/s11270-013-1525-1
Faměra, 2018, Geochemical normalization of magnetic susceptibility for investigation of floodplain sediments, Environ. Earth Sci., 77, 10.1007/s12665-018-7371-0
Faměra, 2018, Pollution distribution in floodplain structure visualised by electrical resistivity imaging in the floodplain of the Litavka River, the Czech Republic, Catena., 165, 157, 10.1016/j.catena.2018.01.023
Fikarová, 2018, Spatial distribution of organic pollutants (PAHs and polar pesticides) in the floodplain of the Ohře (Eger) River, Czech Republic, J. Soils Sediments, 18, 259, 10.1007/s11368-017-1807-0
Filzmoser, 2009, Principal component analysis for compositional data with outliers, Environmetrics, 20, 621, 10.1002/env.966
Filzmoser, 2018
Gałuszka, 2017, The role of analytical chemistry in the study of the Anthropocene, Trends Analyt. Chem., 97, 146, 10.1016/j.trac.2017.08.017
Galuszka, 2020, A consideration of polychlorinated biphenyls as a chemostratigraphic marker of the Anthropocene, Anthr. Rev., 7, 138
Grimley, 2017, Using magnetic fly ash to identify post-settlement alluvium and its record of atmospheric pollution, central USA, Anthropocene, 17, 84, 10.1016/j.ancene.2017.02.001
Grygar, 2010, Geochemical tools for the stratigraphic correlation of floodplain deposits of the Morava River in Strážnické Pomoraví, Czech Republic from the last millennium, Catena., 80, 106, 10.1016/j.catena.2009.09.005
Head, 2015, Formal subdivision of the Quaternary System/Period: past, present, and future, Quat. Int., 383, 4, 10.1016/j.quaint.2015.06.039
Hošek, 2018, Geochemical mapping in polluted floodplains using in situ X-ray fluorescence analysis, geophysical imaging, and statistics: surprising complexity of floodplain pollution hotspot, Catena, 171, 632, 10.1016/j.catena.2018.07.037
Hudson-Edwards, 1999, 2000 years of sediment-borne heavy metal storage in the Yorkshire Ouse basin, NE England, UK, Hydrol. Process., 13, 1087, 10.1002/(SICI)1099-1085(199905)13:7<1087::AID-HYP791>3.0.CO;2-T
Irabien, 2015, Chemostratigraphic and lithostratigraphic signatures of the Anthropocene in estuarine areas from the eastern Cantabrian coast (N. Spain), Quat. Int., 364, 196, 10.1016/j.quaint.2014.08.056
Kapička, 1999, Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic, J. Geochem. Explor., 66, 291, 10.1016/S0375-6742(99)00008-4
Kiss, 2019, Long-term hydrological changes after various river regulation measures: are we responsible for flow extremes?, Nord. Hydrol., 50, 417, 10.2166/nh.2019.095
Kotková, 2019, Migration of risk elements within the floodplain of the Litavka River, the Czech Republic, Geomorphology, 329, 46, 10.1016/j.geomorph.2018.12.010
Lewis, 2015, A transparent framework for defining the anthropocene epoch, Anthr. Rev., 2, 128
Magiera, 2007, Mapping particulate pollution loads using soil magnetometry in urban forests in the Upper Silesia Industrial Region, Poland, Forest Ecol. Manage., 248, 36, 10.1016/j.foreco.2007.02.034
Magiera, 2012, Technogenic magnetic particles in alkaline dusts from power and cement plants, Water Air Soil Pollut., 224
Magiera, 2016, The influence of the wind direction and plants on the variability of topsoil magnetic susceptibility in industrial and urban areas of southern Poland, Environ. Earth Sci., 75, 213, 10.1007/s12665-015-4846-0
Majerová, 2018, Dam reservoirs as an efficient trap for historical pollution: the passage of Hg and Pb through the Ohře River, Czech Republic, Environ. Earth Sci., 77, 10.1007/s12665-018-7761-3
Maslin, 2015, Anthropocene: earth System geological, philosophical and political paradigm shifts, Anthr. Rev., 1
Matschullat, 2000, Geochemical background – can we calculate it?, Environ. Geol., 39, 990, 10.1007/s002549900084
Matys Grygar, 2016, Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments, J. Geochem. Explor., 170, 39, 10.1016/j.gexplo.2016.08.003
Matys Grygar, 2014, Obtaining isochrones from Pollution signals in a fluvial sediment record: a case study in a uranium-polluted floodplain of the Ploučnice River, Czech Republic, Apl. Geochem., 48, 1, 10.1016/j.apgeochem.2014.06.021
Matys Grygar, 2016, Floodplain architecture of an actively meandering river (the Ploučnice River, the Czech Republic) as revealed by the distribution of pollution and electrical resistivity tomography, Geomorphology., 254, 41, 10.1016/j.geomorph.2015.11.012
Matys Grygar, 2020, Segregation and retention of As, potentially toxic metals, and organic pollutants in a reservoir from the Ohre River (the Czech Republic), J. Soils Sediments
Miller, 2004, Heavy metal contamination of water, soil and produce within riverine communities of the Río Pilcomayo basin, Bolivia, Sci. Total Environ., 320, 189, 10.1016/j.scitotenv.2003.08.011
Nováková, 2012, Fluvial sediments ofthe Morava River, Czech Republic: distinguishing regionaland local sources of pollution by heavy metals and magneticparticles, J. Soils Sediments, 13, 460, 10.1007/s11368-012-0632-8
Osawa, 2018, Quantification of dissolved and particulate radiocesium fluxes in two rivers draining the main radioactive pollution plume in Fukushima, Japan (2013-2016), Anthropocene., 22, 40, 10.1016/j.ancene.2018.04.003
Putyrskaya, 2009, Migration of 137Cs in tributaries, lake water and sediment of lago Maggiore (Italy, Switzerland)—analysis and comparison with Lago di Lugano and other lakes, J. Environ. Radioact., 100, 35, 10.1016/j.jenvrad.2008.10.005
Reid, 2009, Use of principal components analysis (PCA) on estuarine sediment datasets: the effect of data pre-treatment, Environ. Pollut., 157, 2275, 10.1016/j.envpol.2009.03.033
Reimann, 1998, 398
Reimann, 2005, Distinguishing between natural and anthropogenic sources for elements in the Environment: regional geochemical surveys versus enrichment factors, Sci. Total Environ., 337, 91, 10.1016/j.scitotenv.2004.06.011
Rubio, 2000, Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution, Mar. Pollut. Bull., 40, 698, 10.1016/S0025-326X(00)00039-4
Rudnick, 2003, Composition of the continental crust, Vol. 3, 1
Sedláček, 2019, Initial stages and evolution of recently abandoned meanders revealed by multi-proxy methods in the Odra River (Czech Republic), Geomorphology, 333, 16, 10.1016/j.geomorph.2019.02.027
Steffen, 2015, The trajectory of the anthropocene: the great acceleration, Anthr. Rev., 2, 81
Stuiver, 1977, Reporting of 14C data, Radiocarbon., 19, 355, 10.1017/S0033822200003672
Taylor, 2013, Environmental impact of a major copper mine spill on a river and floodplain system, Anthropocene., 3, 36, 10.1016/j.ancene.2014.02.004
Tóth, 2016, Heavy metals in agricultural soils of the European Union with implications for food safety, Environ. Int., 88, 299, 10.1016/j.envint.2015.12.017
Tůmová, 2019, Common flaws in the analysis of river sediments polluted by risk elements and how to avoid them: case study in the Plounice River system, Czech Republic, J. Soils Sediments, 19, 2020, 10.1007/s11368-018-2215-9
Viers, 2009, Chemical composition of suspended sediments in World Rivers: new insights from a new database, Sci. Total Environ., 407, 853, 10.1016/j.scitotenv.2008.09.053
Waters, 2016, The Anthropocene is functionally and stratigraphically distinct from the Holocene, Science, 351, 10.1126/science.aad2622
Zalasiewicz, 2011, Stratigraphy of the anthropocene, Philosoph. Transact. Royal Soc. A-Math. Eng. Sci., 369, 1036
Zalasiewicz, 2015, Colonization of the Americas, ‘Little Ice Age’ climate, and bomb-produced carbon: Their role in defining the Anthropocene, The Anthropocene Rewiev, 2, 117, 10.1177/2053019615587056
Zalasiewicz, 2015, Disputed start dates for Anthropocene, Nature, 520, 436, 10.1038/520436b
