Tác động của các hoạt động nhân sinh đến sự đa dạng hình thái và thích nghi của cá vược sông Nile (Oreochromis niloticus, L. 1758) ở Đông Phi

Springer Science and Business Media LLC - Tập 101 - Trang 363-381 - 2018
Papius Dias Tibihika1,2, Herwig Waidbacher3, Charles Masembe4, Manuel Curto1, Stephen Sabatino5, Esayas Alemayehu1, Paul Meulenbroek3, Peter Akoll4, Harald Meimberg1
1Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences (BOKU) Vienna, Wien, Austria
2National Agricultural Research Organization, Kachwekano Zonal Agricultural Research and Development Institute, Kabale, Uganda
3Institute of Hydrobiology and Aquatic Ecosystems Management, University of Natural Resources and Life Sciences (BOKU) Vienna, Wien, Austria
4Department of Zoology, Entomology and Fisheries Sciences, Makerere University Kampala, Kampala, Uganda
5CIBIO, Research Center in Biodiversity and Genetic Resources / InBio Associated Laboratory, University of Porto, Vairão, Portugal

Tóm tắt

Cá vược sông Nile diễn ra tự nhiên ở Đông Phi, nơi đây chúng là một loài có giá trị kinh tế cao. Nhiều quần thể tự nhiên của cá vược sông Nile đã bị ảnh hưởng bởi các hoạt động nhân sinh, bao gồm cả việc chuyển giao cá, liên quan đến các chương trình nhằm nâng cao sản lượng đánh bắt và nuôi trồng thủy sản. Sử dụng các phân tích hình thái học hình học, chúng tôi đã kiểm tra giả thuyết rằng những hoạt động nhân sinh như vậy đã làm gia tăng sự lai tạp giữa các quần thể tự nhiên của cá vược sông Nile và ảnh hưởng đến sự phân bố địa lý của sự biến đổi hình thái trong loài này. Chúng tôi kỳ vọng rằng hình dạng của cá vược sông Nile có sự khác biệt có thể liên quan đến các hoạt động nhân sinh đã được báo cáo trong môi trường không phải bản địa. Để kiểm tra giả thuyết này, chúng tôi đã phân tích hình dạng của 490 cá thể từ mười ba quần thể: ba trại nuôi, sáu quần thể bản địa và bốn quần thể tự nhiên không phải bản địa. Phân tích của chúng tôi cho thấy sự đa dạng hình dạng rõ rệt nhất được quan sát ở bảy quần thể, trong đó có ba quần thể không phải bản địa (Victoria, Kyoga và trại Sindi) và bốn quần thể bản địa (Albert, sông Nile, George và Turkana). Các đặc điểm chịu trách nhiệm cho các kiểu hình đã quan sát chủ yếu liên quan đến hướng của vùng phía trước của cá và có thể do áp lực chọn lọc đa dạng phản ứng với các áp lực môi trường mới (đối với các quần thể không phải bản địa), sự lai tạp hoặc sự trôi dạt. Sự thay đổi hình dạng trong các quần thể không phải bản địa ở độ cao lớn bất ngờ được bảo tồn, gợi ý về những sự giới thiệu gần đây có thể không dẫn đến sự lai tạp hoặc có sự chọn lọc mạnh chống lại sự thay đổi ở các đặc tính đã đo. Mặt khác, những cụm hình thái đã ghi nhận giải thích được mối liên hệ di truyền có thể đến quê hương tổ tiên của chúng. Kết quả của chúng tôi một phần nhất quán với dự đoán rằng các quần thể không phải bản địa thể hiện các kiểu hình khác biệt. Chúng tôi khuyến nghị thực hiện thêm các nghiên cứu với di truyền phân tử để tiếp tục xác nhận các phát hiện này.

Từ khóa


Tài liệu tham khảo

Agnèse JF, Adépo-Gourène B, Abban EK, Fermon Y (1997) Genetic differentiation among natural populations of the Nile tilapia Oreochromis niloticus (Teleostei, Cichlidae). Heredity 79(1):88–96. https://doi.org/10.1038/hdy.1997.126 Bakhoum SA, Sayed-Ahmed MA, Ragheb EA (2009) Genetic evidence for natural hybridization between Nile tilapia (Oreochromis niloticus; Linnaeus, 1758) and blue tilapia (Oreochromis aureus; Steindachner, 1864) in lake Edku, Egypt. Glob Vet 3(2):91–97 Balirwa JS (1992) The evolution of the fishery of Oreochromis niloticus (Pisces: Cichlidae) in Lake Victoria. Hydrobiologia 232(1):85–89. https://doi.org/10.1007/BF00014616 Balirwa JS (1994) The biology, ecology, population parameters and the fishery of the Nile tilapia, Oreochromis niloticus (L).26-38. https://doi.org/10.1007/BF00014616 Balirwa JS (1998) Lake Victoria wetlands and the ecology of the Nile tilapia, Oreochromis niloticus linn. Dissertation submitted in fulfilment of the requirements of the Board of Deans of Wageningen agricultural university and the academic Board of the International Institute for infrastructural, Hydraulic and Environmental Engineering for the Degree of DOCTOR. Balkema Bookstein FL (1982) Foundations of morphometrics. Annu Rev Ecol Syst 13(1):451–470. https://doi.org/10.1146/annurev.es.13.110182.002315 Boyd CE (2004) Farm–Level issues in aquaculture certification: Tilapia. Auburn, Alabama 36831. Report commissioned by WWF-US in 2004. Auburn University, Auburn Breno M, Leirs H, Van Dongen S (2011) Traditional and geometric morphometrics for studying skull morphology during growth in Mastomys natalensis (Rodentia: Muridae). J Mammal 92(6):1395–1406. https://doi.org/10.1644/10-MAMM-A-331.1 Bwanika G, Makanga B, Kizito Y, Chapman L, Balirwa J (2004) Observations on the biology of Nile tilapia, Oreochromis niloticus L., in two Ugandan crater lakes. Afr J Ecol 42(s1):93–101. https://doi.org/10.1111/j.1600-0633.2006.00185.x Byrnes R (2010) Uganda: A country study. GPO for the Library of Congress, Washington Cockerton H, Street-Perrott F, Leng M, Barker P, Horstwood M, Pashley V (2013) Stable-isotope (H, O, and Si) evidence for seasonal variations in hydrology and Si cycling from modern waters in the Nile Basin: implications for interpreting the quaternary record. Quat Sci Rev 66:4–21. https://doi.org/10.1016/j.quascirev.2012.12.005 Corse E, Neve G, Sinama M, Pech N, Costedoat C, Chappaz R, Gilles A (2012) Plasticity of ontogenetic trajectories in cyprinids: a source of evolutionary novelties. Biol J Linn Soc 106(2):342–355. https://doi.org/10.1111/j.1095-8312.2012.01873.x Costa C, Vandeputte M, Antonucci F, Boglione C, Menesatti P, Cenadelli S, Parati K, Chavanne H, Chatain B (2010) Genetic and environmental influences on shape variation in the European sea bass (Dicentrarchus Labrax). Biol J Linn Soc 101(2):427–436. https://doi.org/10.1111/j.1095-8312.2010.01512.x Datta SN, Kaur VI, Dhawan A, Jassal G (2013) Estimation of length-weight relationship and condition factor of spotted snakehead Channa Punctata (Bloch) under different feeding regimes. SpringerPlus 2(1):436. https://doi.org/10.1186/2193-1801-2-436 Deines AM, Bbole I, Katongo C, Feder JL, Lodge DM (2014) Hybridisation between native Oreochromis species and introduced Nile tilapia O. niloticus in the Kafue River, Zambia. Afr J Aquat Sci 39(1):23–34. https://doi.org/10.2989/16085914.2013.864965 Dodson JJ, Bourret A, Barrette MF, Turgeon J, Daigle G, Legault M, Lecomte F (2015) Intraspecific genetic admixture and the morphological diversification of an estuarine fish population complex. PLoS One 10(4):e0123172. https://doi.org/10.1371/journal.pone.0123172 Eklöv P, Svanbäck R (2005) Predation risk influences adaptive morphological variation in fish populations. Am Nat 167(3):440–452. https://doi.org/10.1086/499544 Eknath AE, Bentsen HB, Ponzoni RW, Rye M, Nguyen NH, Thodesen J, Gjerde B (2007) Genetic improvement of farmed tilapias: composition and genetic parameters of a synthetic base population of Oreochromis niloticus for selective breeding. Aquaculture 273(1):1–14. https://doi.org/10.1016/j.aquaculture.2007.09.015 El-Zaeem SY, Ahmed MMM, Salama ME-S, El-Kader WNA (2012) Phylogenetic differentiation of wild and cultured Nile tilapia (Oreochromis niloticus) populations based on phenotype and genotype analysis. Afr J Agric Res 7(19):2946–2954. https://doi.org/10.5897/AJAR11.2170 Froese R (2006) Cube law, condition factor and weight–length relationships: History, meta-analysis and recommendations. J Appl Ichthyol 22(4):241–253. https://doi.org/10.1111/j.1439-0426.2006.00805.x George TT (1995) The most recent nomenclature of tilapia species in Canada and the Sudan. Bull Aquac Assoc Can, Sp Pub 10:33–37 Green J (2009) Nilotic lakes of the western rift. The Nile:263–286. https://doi.org/10.1007/978-1-4020-9726-3_14 Hammer Ø, Harper D, Ryan P (2001) PAST: paleontological statistics software package for education and data analysis Palaeontol. Electron 4:1–9 Holland SM (2008) Non-metric multidimensional scaling (MDS). Available at: http://www.uga.edu/strata/software/pdf/mdsTutorial.pdf ISSION EAIC (1960) East African Fisheries Research Organization Annual Report 1954/1955. East Africa High Commission, Tanganyika Januszkiewicz AJ, Robinson BW (2007) Divergent walleye (Sander Vitreus)-mediated inducible defenses in the centrarchid pumpkinseed sunfish (Lepomis gibbosus). Biol J Linn Soc 90(1):25–36. https://doi.org/10.1111/j.1095-8312.2007.00708.x Jolliffe I (2002) Principal Component Analysis and Factor Analysis. In: Principal Component Analysis. Springer Series in Statistics. Springer, New York Kamanyi J (1996) Management strategies for exploitation of Uganda Fisheries Resources. FIRI Mimeo. February, 1996. Fisheries Research Institute, Uganda Kerschbaumer M, Sturmbauer C (2011) The utility of geometric morphometrics to elucidate pathways of cichlid fish evolution. Int J Evol Biol 2011:1–8. https://doi.org/10.4061/2011/290245 Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11(2):353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x Kolding J (1992) Population dynamics and life-history styles of Nile tilapia, Oreochromis niloticus, in Ferguson’s Gulf, Lake Turkana, Kenya. Environ Biol Fish 37:25–46. https://doi.org/10.1007/BF00000710 Langerhans RB, Reznick DN (2010) Ecology and evolution of swimming performance in fishes: predicting evolution with biomechanics. Fish locomotion: an eco-ethological Perspective:200–248 Le Cren E (1951) The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca Fluviatilis). J Anim Ecol:201–219, https://doi.org/10.2307/1540 Lorenz O, Smith P, Coghill L (2014) Condition and morphometric changes in tilapia (Oreochromis sp.) after an eradication attempt in southern Louisiana. NeoBiota 20:49. https://doi.org/10.3897/neobiota.20.506 Lowe-McConnell RH (1958) Observations on the biology of Tilapia Nilotica Linné in east African waters. Rev Zool Bot Afr 57:129–170 Lowe-McConnell R (2003) Recent research in the African Great Lakes: fisheries, biodiversity and cichlid evolution. In: Freshwater Forum, pp 4–64 Lowe-McConnell R (2010) Fisheries and cichlid evolution in the African Great Lakes: progress and problems. https://doi.org/10.1608/FRJ-2.2.2 Maderbacher M, Bauer C, Herler J, Postl L, Makasa L, Sturmbauer C (2008) Assessment of traditional versus geometric morphometrics for discriminating populations of the Tropheus Moorii species complex (Teleostei: Cichlidae), a Lake Tanganyika model for allopatric speciation. J Zool Syst Evol Res 46(2):153–161. https://doi.org/10.1111/j.1439-0469.2007.00447.x Mallet J (2007) Hybrid speciation. Nature 446(7133):279–283. https://doi.org/10.1038/nature0570 Mekkawy IA, Mohammad AS (2011) Morphometrics and Meristics of the three Epinepheline species: Cephalopholis Argus (Bloch and Schneider, 1801), Cephalopholis Miniata (Forsskal, 1775) and Variola Louti (Forsskal, 1775) from the Red Sea, Egypt. J Biol Sci 1(11):10–21. https://doi.org/10.3923/jbs.2011.10.21 Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. Proc R Soc Lond B Biol Sci 278(1719):2705–2713 Mugidde R (1993) The increase in phytoplankton primary productivity and biomass in Lake Victoria (Uganda). Verh Int Ver Limnol 25:846–849 Muir A, Vecsei P, Krueger C (2012) A perspective on perspectives: methods to reduce variation in shape analysis of digital images. Trans Am Fish Soc 141(4):1161–1170. https://doi.org/10.1080/00028487.2012.685823 Mwanja W (2000) Genetic biodiversity and evolution of two principal fisheries species groups, the labeine and tilapiine, of Lake Victoria, East Africa. Ph. D. thesis, Ohio State University, Cleveland, Ohio Ndiwa TC, Nyingi DW, Claude J, Agnèse J-F (2016) Morphological variations of wild populations of Nile tilapia (Oreochromis niloticus). Environ Biol Fish 99(5):473–485. https://doi.org/10.1007/s10641-016-0492-y Njiru M, Nyamweya C, Gichuki J, Mugidde R, Mkumbo O, Witte F (2012) Increase in anoxia in Lake Victoria and its effects on the fishery. In: Anoxia. InTech Ogle DH (2013) FishR Vignette-Fish Condition and Relative Weights: AIFFD Chapter 10.1–12 Ogutu-Ohwayo R (1990) The decline of the native fishes of lakes Victoria and Kyoga (East Africa) and the impact of introduced species, especially the Nile perch, Lates niloticus, and the Nile tilapia, Oreochromis niloticus. Environ Biol Fish 27(2):81–96. https://doi.org/10.1007/BF00001938 Ogutu-Ohwayo R, Hecky RE, Cohen AS, Kaufman L (1997) Human impacts on the African great lakes. Environ Biol Fish 50(2):117–131. https://doi.org/10.1023/A:1007320932349 Ondhoro CC, Masembe C, Maes GE, Nkalubo NW, Walakira JK, Naluwairo J, Mwanja MT, Efitre J (2016) Condition factor, length–weight relationship, and the fishery of Barbus Altianalis (Boulenger 1900) in lakes Victoria and Edward basins of Uganda. Environ Biol Fish:1–12. https://doi.org/10.1007/s10641-016-0567-9 Otieno ON, Kitaka N, Njiru J (2013) Length-weight relationship, condition factor, length at first maturity and sex ratio of Nile tilapia, Oreochromis niloticus in Lake Naivasha, Kenya. Int J Fish Aquat Stud:67–72 Park PJ, Aguirre WE, Spikes DA, Miyazaki JM (2013) Landmark-based geometric Morphometrics: what fish shapes can tell us about Fish evolution. Proceedings of the Association for Biology Laboratory Education 34:361–371 Peligro VC, Jumawan JC (2016) Assessment of fluctuating asymmetry in the body shapes of Nile tilapia (Oreochromis niloticus) from Masao river, Butuan city, Philippines. AACL Bioflux 9(3):604–613 Perrier C, Baglinière JL, Evanno G (2013) Understanding admixture patterns in supplemented populations: a case study combining molecular analyses and temporally explicit simulations in Atlantic salmon. Evol Appl 6(2):218–230. https://doi.org/10.1111/j.1752-4571.2012.00280.x Petrtyl M, Kalous L, Memiş D (2014) Comparison of manual measurements and computer-assisted image analysis in fish morphometry. Turk J Vet Anim Sci 38(1):88–94. https://doi.org/10.3906/vet-1209-9 Ponton D, Carassou L, Raillard S, Borsa P (2013) Geometric morphometrics as a tool for identifying emperor fish (Lethrinidae) larvae and juveniles. J Fish Biol 83(1):14–27. https://doi.org/10.1111/jfb.12138 Popma T, Masser M (1999) Tilapia Life History and Biology. Southern Regional Aquaculture Centre. SRAC Publication No. 283, Stoneville Pullin R, Palomares M-L, Casal C, Dey M, Pauly D (1997) Environmental impacts of tilapias. In: tilapia aquaculture , 554–570 Rani S, Gupta R (2015) Effect of heavy metals on the morphology and growth performance of Indian major carps. Ann Biol 31(1):117–121 Ricker W (1975) Computation and interpretation of biological statistics of fish populations. Bull Fish Res Board Can 191:1–382 Robinson BW, Wilson DS (1994) Character release and displacement in fishes: a neglected literature. Am Nat 144(4):596–627. https://doi.org/10.1086/285696 Rohlf FJ (2002) Geometric morphometrics and phylogeny. Morphol Shape Phylogeny:175–193, https://doi.org/10.1201/9780203165171.ch9 Rohlf F (2004) Tpsdig (version 1.40). Department of Ecology and Evolution, State University of New York at Stony Brook, New York. http://life.bio.sunysb.edu/ee/rohlf/software.html Scharnweber K, Watanabe K, Syväranta J, Wanke T, Monaghan MT, Mehner T (2013) Effects of predation pressure and resource use on morphological divergence in omnivorous prey fish. BMC Evol Biol 13(1):132. https://doi.org/10.1186/1471-2148-13-132 Seebacher F, Webster MM, James RS, Tallis J, Ward AJ (2016) Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickleback (Gasterosteus Aculeatus). Open Sci 3(6):160316. https://doi.org/10.1098/rsos.160316 Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19(4):198–207. https://doi.org/10.1016/j.tree.2004.01.003 Shao Y, Wang J, Qiao Y, He Y, Cao W (2007) Morphological variability between wild populations and inbred stocks of a Chinese minnow, Gobiocypris rarus. Zool Sci 24(11):1094–1102. https://doi.org/10.2108/zsj.24.1094 Sinama M, Gilles A, Costedoat C, Corse E, Olivier J-M, Chappaz R, Pech N (2013) Non-homogeneous combination of two porous genomes induces complex body shape trajectories in cyprinid hybrids. Front Zool 10(1):22. https://doi.org/10.1186/1742-9994-10-22 Stelkens RB, Schmid C, Selz O, Seehausen O (2009) Phenotypic novelty in experimental hybrids is predicted by the genetic distance between species of cichlid fish. BMC Evol Biol 9(1):283. https://doi.org/10.1186/1471-2148-9-283 Stewart K (1988) Changes in condition and maturation of the Oreochromis niloticus L. population of Ferguson's gulf, Lake Turkana, Kenya. J Fish Biol 33(2):181–188. https://doi.org/10.1111/j.1095-8649.1988.tb05461.x Swaibuh Lwanga M, Kansiime F, Denny P, Scullion J (2003) Heavy metals in Lake George, Uganda, with relation to metal concentrations in tissues of common fish species. Hydrobiologia 499(1):83–93. https://doi.org/10.1023/A:1026347703129 Tibihika PDM, Barekye A, Bykora E (2015) Fish species composition, abundance and diversity of Minor Lakes in south western Uganda/Kigezi region. Int J Sci Technol 4(5):204–213 Tibihika PDM, Okello W, Barekye A, Mbabazi D, Omony J, Kiggundu V (2016) Status of Kigezi minor lakes: a limnological survey in the lakes of Kisoro, Kabale and Rukungiri districts. Int J Water Resour and Environ Eng 8(5):60–73 Trewavas E (1983) Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia. British Museum (Natural History), London, https://doi.org/10.5962/bhl.title.123198 Verschuren D, Johnson TC, Kling HJ, Edgington DN, Leavitt PR, Brown ET, Talbot MR, Hecky RE (2002) History and timing of human impact on Lake Victoria, East Africa. Proc R Soc Lond B Biol Sci 269(1488):289–294. https://doi.org/10.1098/rspb.2001.1850 Vreven E, Teugels G, Adepo-Gourene B, Agnese J (1998) Morphometric and allozyme variation in natural populations and cultured strains of the Nile tilapia Oreochromis Niloticus (Teleostei, Cichlidae). Belg J Zool 128(1):23–34 Welcomme R (1966) Recent changes in the stocks of tilapia in Lake Victoria. Nature 212(5057):52–54. https://doi.org/10.1038/212052a0 Williams J (2000) The coefficient of condition of fish. Chapter 13 in Schneider, James C.(ed.) 2000. Manual of fisheries survey methods II: with periodic updates. Michigan Department of Natural Resources Fisheries Special Report 25 Wilson LA, MacLeod N, Humphrey LT (2008) Morphometric criteria for sexing juvenile human skeletons using the ilium. J Forensic Sci 53(2):269–278. https://doi.org/10.1111/j.1556-4029.2008.00656.x Witte F, Wanink J, Kishe-Machumu M (2007) Species distinction and the biodiversity crisis in Lake Victoria. Trans Am Fish Soc 136(4):1146–1159. https://doi.org/10.1577/T05-179.1 Xenikoudakis G, Ersmark E, Tison JL, Waits L, Kindberg J, Swenson J, Dalén L (2015) Consequences of a demographic bottleneck on genetic structure and variation in the Scandinavian brown bear. Mol Ecol 24(13):3441–3454. https://doi.org/10.1111/mec.13239 Zelditch ML, Swiderski DL, Sheets HD (2012) A Practical Companion to Geometric Morphometrics for Biologists: Running analyses in freely-available software. Free download from https://booksite.elsevier.com/9780123869036/ (18 June 2013)