Sự xáo trộn do con người làm thay đổi giá trị bảo tồn của các doline karst

Biodiversity and Conservation - Tập 29 - Trang 503-525 - 2019
Zoltán Bátori1, András Vojtkó2, Gunnar Keppel3,4, Csaba Tölgyesi1, Andraž Čarni5,6, Matija Zorn7, Tünde Farkas8, László Erdős9, Péter János Kiss1,10, Gábor Módra1,10, Mateja Breg Valjavec7
1Department of Ecology, University of Szeged, Szeged, Hungary
2Department of Botany, Eszterházy Károly University of Applied Sciences, Eger, Hungary
3Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Adelaide, Australia
4Future Industries Institute, University of South Australia, Adelaide, Australia
5Jovan Hadži Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
6School for Viticulture and Enology, University of Nova Gorica, Nova Gorica, Slovenia
7Anton Melik Geographical Institute, Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
8Aggtelek National Park Directorate, Jósvafő, Hungary
9MTA Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
10Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary

Tóm tắt

Các doline là những chỗ trũng trong cảnh quan karst, có giá trị cao cho việc bảo tồn, cung cấp môi trường sống và hỗ trợ các loài không có trong cảnh quan xung quanh. Điểm này do sự đa dạng vi môi trường cao của chúng và khả năng tách biệt vi khí hậu khỏi sự thay đổi khí hậu khu vực, khiến chúng trở thành nơi trú ẩn tiềm năng cho đa dạng sinh học. Tuy nhiên, các xáo trộn do con người tại địa phương đã ảnh hưởng đáng kể đến thành phần loài và cấu trúc thảm thực vật của nhiều doline. Trong bài báo này, chúng tôi điều tra giá trị bảo tồn của các doline ở ba vùng karst châu Âu, nơi mà các mức độ và loại hình xáo trộn do con người đã tạo hình thảm thực vật trong nhiều thế kỷ, sử dụng số lượng loài thực vật thích nghi với điều kiện mát mẻ, ẩm ướt và có giá trị bảo tồn cao (tức là các loài dễ bị tổn thương) làm chỉ số. Chúng tôi phát hiện rằng các xáo trộn do con người thường có tác động tiêu cực, làm giảm số lượng các loài dễ bị tổn thương được hỗ trợ bởi các doline. Tuy nhiên, nhiều loài thích nghi với điều kiện lạnh và ẩm ướt hơn đã được tìm thấy ở một số doline được trồng với Picea abies không phải bản địa so với các doline ít bị xáo trộn hơn, cho thấy rằng các xáo trộn do con người cũng có thể có những ảnh hưởng tích cực đối với đa dạng sinh học. Chúng tôi kết luận rằng các xáo trộn do con người làm thay đổi khả năng của doline trong việc hỗ trợ các loài dễ bị tổn thương và điều này sẽ ảnh hưởng đến sự sống sót của các loài trong các cảnh quan chịu ảnh hưởng của sự nóng lên toàn cầu. Trong bối cảnh này, các ảnh hưởng của nhiều loại xáo trộn khác nhau đối với thành phần loài và tính đa dạng cần phải được xem xét cẩn thận để xác định các lựa chọn bảo tồn và/hoặc quản lý tốt nhất.

Từ khóa

#doline #karst #bảo tồn #xáo trộn do con người #đa dạng sinh học

Tài liệu tham khảo

Antonić O, Hatic D, Pernar R (2001) DEM-based depth in sink as an environmental estimator. Ecol Model 138:247–254 Ashcroft MB (2010) Identifying refugia from climate change. J Biogeogr 37:1407–1413 Ashcroft MB, Chisholm LA, French KO (2008) The effect of exposure on landscape scale soil surface temperatures and species distribution models. Landsc Ecol 23:211–225 Bárány-Kevei I (1999) Microclimate of karstic dolines. Acta Climatol Univ Szegediensis 32–33:19–27 Bates D, Maechler M, Bolker B (2013) lme4: linear mixedeffects models using S4 classes. R package version 0.999999-2. http://cran.r-project.org/package=lme4 Bátori Z, Csiky J, Erdős L et al (2009) Vegetation of the dolines in Mecsek Mountains (South Hungary) in relation to the local plant communities. Acta Carsolog 38:237–252 Bátori Z, Körmöczi L, Erdős L et al (2012) Importance of karst sinkholes in preserving relict, mountain, and wet-woodland plant species under sub-Mediterranean climate: a case study from southern Hungary. J Cave Karst Stud 74:127–134 Bátori Z, Csiky J, Farkas T et al (2014a) The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: refugia and climate change. Int J Speleol 43:15–26 Bátori Z, Farkas T, Erdős L et al (2014b) A comparison of the vegetation of forested and non-forested solution dolines in Hungary: a preliminary study. Biologia 69:1339–1348 Bátori Z, Vojtkó A, Farkas T et al (2017) Large- and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia. Ann Bot 119:301–309 Bátori Z, Vojtkó A, Maák IE et al (2019) Karst dolines provide diverse microhabitats for different functional groups in multiple phyla. Sci Rep 9:7176 Battisti C, Giardini M, Marini F et al (2017) Diversity metrics, species turnovers and nestedness of bird assemblages in a deep karst sinkhole. Isr J Ecol Evol 63:8–16 Bauer N (2018) Contributions and plant geographical notes to the flora of Cres—Lošinj archipelago (Croatia). Nat Croat 27:331–342 Berbet MLC, Costa MH (2003) Climate change after tropical deforestation: seasonal variability of surface albedo and its effects on precipitation change. J Clim 16:2099–2104 Binkley D, Valentine D (1991) Fifty-year biogeochemical effects of green ash, white pine, and Norway spruce in a replicated experiment. Forest Ecol Manag 40:13–25 Borhidi A (1995) Social behaviour types, the naturalness and relative indicator values of the higher plants in the Hungarian Flora. Acta Bot Hung 39:97–182 Breg Valjavec M (2014) Study of filled dolines by using 3D stereo image processing and electrical resistivity imaging. Int J Speleol 43:57–68 Breg Valjavec M, Zorn M, Čarni A (2018a) Bioindication of human-induced soil degradation in enclosed karst depressions (dolines) using Ellenberg indicator values (Classical Karst, Slovenia). Sci Total Environ 640–641:117–126 Breg Valjavec M, Zorn M, Čarni A (2018b) Human-induced land degradation and biodiversity of Classical Karst landscape: on the example of enclosed karst depressions (dolines). Land Degrad Dev 29:3823–3835 Brockerhoff EG, Jactel H, Parrotta JA et al (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951 Brullo S, Giusso del Galdo G (2001) Astracantha dolinicola (Fabaceae): a new species from Crete. Nord J Bot 21:475–480 Chauchard S, Carcaillet C, Guibal F (2007) Patterns of land-use abandonment control tree-recruitment and forest dynamics in Mediterranean mountains. Ecosystems 10:936–948 Chen IC, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026 Cruz-Paredes C, Frøslev TG, Michelsen A et al (2019) Wood ash application in a managed Norway spruce plantation did not affect ectomycorrhizal diversity or N retention capacity. Fungal Ecol 39:1–11 De Waele J (2009) Evaluating disturbance on mediterranean karst areas: the example of Sardinia (Italy). Environ Geol 58:239–255 Dobrowski SZ (2010) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17:1022–1035 Dövényi Z (ed) (2010) Magyarország kistájainak katasztere. MTA Földrajztudományi Kutatóintézet, Budapest Egli BR (1991) The special flora, ecological and edaphic conditions of dolines in the mountain of Crete. Bot Chron 10:325–335 Egli BR, Gerstberger P, Greuter W et al (1990) Horstrissea dolinicola, a new genus and species of umbels (Umbelliferae, Apiaceae) from Kriti (Greece). Willdenowia 19:389–399 Favretto D, Poldini L (1985) The vegetation in the dolinas of the karst region near Trieste (Italy). Studia Geobotanica 5:5–18 Filibeck G, Sperandii MG, Bazzichetto M et al (2019) Exploring the drivers of vascular plant richness at very fine spatial scale in sub-Mediterranean limestone grasslands (Central Apennines, Italy). Biodivers Conserv 28:2701–2725 Fox J, Weisberg S (2011) An {R} Companion to applied regression, 2nd Edition. Sage, Thousand Oaks. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion Frey SJK, Hadley AS, Betts MG (2016) Microclimate predicts within-season distribution dynamics of montane forest birds. Divers Distrib 22:944–959 Gibb H, Sanders NJ, Dunn RR et al (2018) Habitat disturbance selects against both small and large species across varying climates. Ecography 41:1184–1193 Greiser C, Meineri E, Luoto M et al (2018) Monthly microclimate models in a managed boreal forest landscape. Agr Forest Meteorol 250–251:147–158 Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecol Manag 148:185–206 Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009 Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467 Házi J, Bartha S, Szentes S et al (2011) Seminatural grassland management by mowing of Calamagrostis epigejos in Hungary. Plant Biosyst 145:699–707 Horvat I (1953) Vegetacija ponikava. Hrvatski. Geografski Glasnik 14–15:1–25 Hu J, Herbohn J, Chazdon RL et al (2018) Recovery of species composition over 46 years in a logged Australian tropical forest following different intensity silvicultural treatments. Forest Ecol Manag 409:660–666 Iatroú G, Fournaraki C (2006) Horstrissea dolinicola (errata version published in 2016). The IUCN Red List of Threatened Species 2006. http://www.iucnredlist.org/details/61613/0 Jian XM, Shui W, Wang YN et al (2018) Species diversity and stability of grassland plant community in heavily-degraded karst tiankeng: a case study of Zhanyi Tiankeng in Yunnan, China. Acta Ecol Sin 38:4704–4714 Kaligarič M, Culiberg M, Kramberger B (2006) Recent vegetation history of the North Adriatic grasslands: expansion and decay of an anthropogenic habitat. Folia Geobot 41:241–258 Kemencei Z, Farkas R, Páll-Gergely B et al (2014) Microhabitat associations of land snails in forested dolinas: implications for coarse filter conservation. Community Ecol 15:180–186 Keppel G, Wardell-Johnson GW (2015) Refugial capacity defines holdouts, microrefugia and stepping-stones: a response to Hannah et al. Trends Ecol Evol 30:233–234 Keppel G, Mokany K, Wardell-Johnson GW et al (2015) The capacity of refugia for conservation planning under climate change. Front Ecol Environ 13:106–112 Keppel G, Robinson TP, Wardell-Johnson GW et al (2017) A low-altitude mountain range as an important refugium for two narrow endemics in the Southwest Australian Floristic Region biodiversity hotspot. Ann Bot 119:289–300 Kermavnar J, Eler K, Marinšek A et al (2019) Initial understory vegetation responses following different forest management intensities in Illyrian beech forests. Appl Veg Sci 22:48–60 Király G (ed) (2007) Vörös Lista. A magyarországi edényes flóra veszélyeztetett fajai, Saját kiadás Király G (ed) (2009) Új magyar füvészkönyv. Magyarország hajtásos növényei, Határozókulcsok, Aggteleki Nemzeti Park Igazgatóság, Jósvafő Kovačič G, Ravbar N (2013) Analysis of human induced changes in a karst landscape—the filling of dolines in the Kras plateau, Slovenia. Sci Total Environ 447:143–151 Kovács B, Tinya F, Ódor P (2017) Stand structural drivers of microclimate in mature temperate mixed forests. Agr Forest Meteorol 234:11–21 Lamprecht A, Semenchuk PR, Steinbauer K et al (2018) Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytol 220:447–459 Lazarević P, Lazarević M, Krivošej Z et al (2009) On the distribution of Dracocephalum ruyschiana (Lamiaceae) in the Balkan Peninsula. Phytol Balcan 15:175–179 Lenoir J, Hattab T, Pierre G (2017) Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography 40:253–266 Lindenmayer D, Thorn S, Banks S (2017) Please do not disturb ecosystems further. Nat Ecol Evol 1:0031 Maclean IMD, Suggitt AJ, Wilson RJ et al (2017) Fine-scale climate change: modelling spatial variation in biologically meaningful rates of warming. Glob Change Biol 23:256–268 Meineri E, Hylander K (2017) Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography 40:1003–1013 Mishra BP, Tripathi OP, Tripathi RS et al (2004) Effects of anthropogenic disturbance on plant diversity and community structure of a sacred grove in Meghalaya, northeast India. Biodivers Conserv 13:421–436 Morelli TL, Daly C, Dobrowski SZ et al (2016) Managing climate change refugia for climate adaptation. PLoS ONE 11:e0169725 Mucina L, Bültmann H, Dierßen K et al (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19:3–264 O’Brien KR, Waycott M, Maxwell P et al (2018) Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Mar Pollut Bull 134:166–176 Oksanen J, Blanchet FG, Kindt R et al (2018) Vegan: Community ecology. http://CRAN.R-project.org/package=vegan Özkan K, Gulsoy S, Mert A et al (2010) Plant distribution-altitude and landform relationships in karstic sinkholes of Mediterranean region of Turkey. J Environ Biol 31:51–60 Parise M, Pascali V (2003) Surface and subsurface environmental degradation in the karst of Apulia (southern Italy). Environ Geol 44:247–256 Pignatti S (2005) Valori di bioindicazione delle piante vascolari della flora d’Italia. Braun-Blanquetia 39:1–97 R Core Team (2018) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/ Raschmanová N, Miklisová D, Kováč L’ et al (2015) Community composition and cold tolerance of soil Collembola in a collapse karst doline with strong microclimate inversion. Biologia 70:802–811 Raschmanová N, Miklisová D, Kováč L’ (2018) A unique small-scale microclimatic gradient in a temperate karst harbours exceptionally high diversity of soil Collembola. Int J Speleol 47:247–262 Růžička V, Mlejnek R, Juřičková L et al (2016) Invertebrates of the Macocha Abyss (Moravian Karst, Czech Republic). Acta Carsol 45:71–84 Saikh H, Varadachari C, Ghosh K (1998) Changes in carbon, nitrogen and phosphorus levels due to deforestation and cultivation: a case study in Simlipal National Park, India. Plant Soil 198:137–145 Serra-Diaz JM, Scheller RM, Syphard AD et al (2015) Disturbance and climate microrefugia mediate tree range shifts during climate change. Landsc Ecol 30:1039–1053 Somodi I, Virágh K, Podani J (2008) The effect of the expansion of the clonal grass Calamagrostis epigejos on the species turnover of a semiarid grassland. Appl Veg Sci 11:187–192 Soó R (1980) A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve VI. Akadémiai Kiadó, Budapest Stančič L, Repe B (2018) Post-fire succession: selected examples from the Karst region, southwest Slovenia. Acta geogr Slov 58:27–38 Stylinski CD, Allen EB (1999) Lack of native species recovery following severe exotic disturbance in southern Californian shrublands. J Appl Ecol 36:544–554 Su Y, Tang Q, Mo F et al (2017) Karst tiankengs as refugia for indigenous tree flora amidst a degraded landscape in southwestern China. Sci Rep 7:4249 Suggitt AJ, Gillingham PK, Hill JK et al (2011) Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120:1–8 Suggitt AJ, Wilson RJ, Isaac NJB et al (2018) Extinction risk from climate change is reduced by microclimatic buffering. Nat Clim Change 8:713–717 Sutton WRJ (1999) Does the world need planted forests? New Zeal J For 44:24–29 Syphard AD, Franklin J (2010) Species traits affect the performance of species distribution models for plants in southern California. J Veg Sci 21:177–189 Tan K, Perdetzoglou DK, Roussis V (1997) Biebersteinia orphanidis (Geraniaceae) from southern Greece. Ann Bot Fenn 34:41–45 Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453 Tichý L, Chytrý M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818 Van Beynen P, Townsend K (2005) A disturbance index for karst environments. Environ Manag 36:101–116 van de Leemput IA, Dakos V, Scheffer M et al (2018) Slow recovery from local disturbances as an indicator for loss of ecosystem resilience. Ecosystems 21:141–152 Vojtkó A (2001) A Bükk hegység flórája, Sorbus 2001 Kiadó, Eger Vojtkó A, Vojtkó E, Dulai S et al (2018) A fás vegetáció jellegzetességei az Alsó-hegy (Gömör–Tornai-karszt) karsztfennsíkján. Bot Közl 105:97–108 Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395 Wezel A (2007) Changes between 1927 and 2004 and effect of rock climbing on occurrence of Saxifraga paniculata and Draba aizoides, two glacial relicts on limestone cliffs of the Swabian Jura, southern Germany. J Nat Conserv 15:84–93 Whiteman CD, Haiden T, Pospichal B et al (2004) Minimum temperatures, diurnal temperature ranges, and temperature inversion in limestone sinkholes of different sizes and shapes. J Appl Meteorol 43:1224–1236 Wraber T (1995) Cerastium dinaricum G. Beck & Szysz.—a new species in the flora of Slovenia. Hladnikia 4:11–18 Yannitsaros AG, Constantinidis TA, Vassiliades DD (1996) The rediscovery of Biebersteinia orphanidis Boiss. (Geraniaceae) in Greece. Bot J Linn Soc 120:239–242 Zenner EK, Berger AL (2008) Influence of skidder traffic and canopy removal intensities on the ground flora in a clearcut-with-reserves northern hardwood stand in Minnesota, USA. Forest Ecol Manag 256:1785–1794 Zorn M, Kumer P, Ferk M (2015) Od gozda do gozda ali kje je goli, kamniti Kras? Kronika 63:561–574