Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự phân ly trước-sau của mạng chế độ mặc định ở chó
Tóm tắt
Mạng chế độ mặc định (DMN) ở người đã được nghiên cứu rộng rãi bằng cách sử dụng phân tích tương quan dựa trên mẫu (SCA) và phân tích thành phần độc lập (ICA). Mặc dù DMN cũng đã được quan sát ở khỉ, nhưng có những báo cáo mâu thuẫn về việc liệu nó có tồn tại ở động vật gặm nhấm hay không. Chó là động vật có vú cao hơn so với động vật gặm nhấm, nhưng về mặt nhận thức thì không phát triển bằng khỉ và con người. Do đó, chúng là một loài thú vị trong hệ thống tiến hóa để khám phá các chức năng so sánh của DMN giữa các loài. Trong nghiên cứu này, chúng tôi muốn biết liệu DMN, và do đó các chức năng của nó như xử lý tự tham chiếu, có phải là đặc trưng riêng cho con người/khỉ hay chúng ta cũng có thể quan sát DMN ở các loài động vật như chó. Để giải quyết vấn đề này, dữ liệu chụp MRI chức năng trạng thái nghỉ từ não của những chú chó hơi bị gây mê và những chú chó không bị ràng buộc và hoàn toàn tỉnh táo đã được thu thập, và ICA cũng như SCA đã được thực hiện để xác định DMN. Vì gây mê có thể làm biến đổi các mạng trạng thái nghỉ, nên việc xác nhận kết quả của chúng tôi ở những chú chó tỉnh táo là cần thiết. Chụp hình chó tỉnh táo được thực hiện bằng cách huấn luyện chó giữ đầu không di chuyển bằng các kỹ thuật thích ứng hành vi củng cố. Chúng tôi phát hiện rằng các vùng trước (như vỏ não cingulate trước và vỏ não trán giữa) và vùng sau (như vỏ não cingulate sau) của DMN đã được phân ly ở cả chó tỉnh táo và chó bị gây mê.
Từ khóa
#mạng chế độ mặc định #chó #chụp MRI chức năng #phân tích thành phần độc lập #phân tích tương quan dựa trên mẫuTài liệu tham khảo
Andrews-Hanna JR et al (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56(5):924–935
Ashburner J, Friston KJ (1999) Nonlinear spatial normalization using basis functions. Human Brain Mapp 7:254–266
Auer DP (2008) Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the ‘resting’ brain. Magn Reson Imaging 26(7):1055–1064
Becerra L, Pendse G, Chang P-C, Bishop J, Borsook D (2011) Robust reproducible resting state networks in the awake rodent brain. PloS One 6(10):e25701. doi:10.1371/journal.pone.0025701
Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013
Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159
Berns G, Brooks A, Spivak M (2012) Functional MRI in awake unrestrained dogs. PloS One 7(5):e38027. doi:10.1371/journal.pone.0038027
Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541
Bluhm RL et al (2008) Default mode network connectivity: effects of age, sex, and analytic approach. NeuroReport 19(8):887–891
Bokde AL et al (2006) Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain 129:1113–1124
Bonnelle V et al (2011) Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci 31(38):13442–13451
Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence–initial experience in the brain. Radiology 182:769–775
Brown GD, Yamada S, Sejnowski TJ (2001) Independent component analysis at the neural cocktail party. Trends Neurosci 24(1):54–63
Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11(2):49–57
Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38
Butts K, Riederer SJ, Ehman RL, Thompson RM, Jack CR (1994) Interleaved echo planar imaging on a standard MRI system. Magn Reson Med 31:67–72
Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapp 14(3):140–151
Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapp 29(7):828–838
Castellanos FX et al (2008) Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 63:332–337
Chao-Gan Y, Yu-Feng Z (2010) DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI.” Frontiers Syst Neurosci 4(13). doi:10.3389/fnsys.2010.00013
Cole, DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers Syst Neurosci 4(8). doi:10.3389/fnsys.2010.00008
Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA (2000) Mapping functionally related regions of brain with functional connectivity. Am J Neuroradiol 21(9):1636–1644
Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853
Damoiseaux JS et al (2008) Reduced resting-state brain activity in the ‘‘default network’’ in normal aging. Cereb Cortex 18(8):1856–1864
Danielson NB, Guo JN, Blumenfeld H (2011) The default mode network and altered consciousness in epilepsy. Behav Neurol 24(1):55–65
Datta R et al (2012) A digital atlas of the dog brain. PLoS ONE 7(12):e52140
Deshpande G, Santhanam P, Hu X (2011) Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data. Neuroimage 54(2):1043–1052
Esposito F et al (2009) Does the default-mode functional connectivity of the brain correlate with working-memory performances? Arch Ital Biol 147(1–2):11–20
Fair DA et al (2009) Functional brain networks develop from a “local to distributed” organization.” PLoS Comput Biol 5(5):e1000381
Fornito A, Bullmore ET (2010) What can spontaneous fluctuations of the blood oxygenation-level-dependent signal tell us about psychiatric disorders? Curr Opin Psychiatry 23(3):239–249
Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711
Fransson P et al (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci USA 104(39):15531–15536
Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith C, Frackowiak J (1995) Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapp 2(4):189–210
Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35(3):346–355
George MS, Ketter TA, Parekh PI, Horwitz B, Herscovitch P, Post RM (1995) Brain activity during transient sadness and happiness in healthy women. Am J Psychiatry 152(3):341–351
George MS, Ketter TA, Parekh PI, Herscovitch P, Post RM (1996) Gender differences in regional cerebral blood flow during transient self-induced sadness or happiness. Biol Psychiatry 40(9):859–871
Gilbert DT, Wilson TD (2007) Prospection: experiencing the future. Science 317(5843):1351–1354
Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21:424–430
Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258
Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–4642
Greicius MD et al (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62:429–437
Greicius MD et al (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29(7):839–847
Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694
Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity related to working memory performance. J Neurosci 26(51):13338–13343
Harrison BJ et al (2008) Consistency and functional specialization in the default mode brain network. Proc Natl Acad Sci USA 105(28):9781–9786
Johnson SC, Baxter LC, Wilder LS, Pipe JG, Heiserman JE, Prigatano GP (2002) Neural correlates of self-reflection. Brain 125(Pt 8):1808–1814
Knyazev GG (2012) Extraversion and anterior vs. posterior DMN activity during self-referential thoughts. Frontiers Human Neurosci 6(348). doi:10.3389/fnhum.2012.00348
Leech R, Kamourieh S, Beckmann CF, Sharp DJ (2011) Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci 31(9):3217–3224
Lei X, Zhao Z, Chen H (2013) Extraversion is encoded by scale-free dynamics of default mode network. Neuroimage 74:52–57
Liang Z, King J, Zhang N (2011) Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci 31(10):3776–3783
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157
Long XY et al (2008) Default mode network as revealed with multiple methods for resting-state functional MRI analysis. J Neurosci Methods 171(2):349–355
Lou HC et al (2004) Parietal cortex and representation of the mental Self. Proc Natl Acad Sci USA 101(17):6827–6832
Lu H et al (2007) Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc Natl Acad Sci USA 104(46):18265–18269
Lu H, Zou Q, Gu H, Raichle ME, Steina EA, Yanga Y (2011) Rat brains also have a default mode network. Proc Natl Acad Sci USA 109(10):3979–3984
Lundstrom BN, Ingvar M, Petersson KM (2005) The role of precuneus and left inferior frontal cortex during source memory episodic retrieval. Neuroimage 27(4):824–834
Ma L, Wang B, Chen X, Xiong J (2007) Detecting functional connectivity in the resting brain: a comparison between ICA and CCA. Magn Reson Imaging 25(1):47–56
Mantini D et al (2011) Default mode of brain function in monkeys. J Neurosci 31(36):12954–12962
Mayberg HS et al (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156(5):675–682
Mitchell JP, Heatherton T, Macrae CN (2002) Distinct neural systems subserve person and object knowledge. Proc Natl Acad Sci USA 99(23):15238–15243
Neafsey EJ, Terreberry RR, Hurley KM, Ruit KG, Frysztak RJ (1993) Anterior cingulate cortex in rodents: connections, visceral control functions, and implications for emotion. In: Vogt BA, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus. Birkhäuser, Boston, pp 207–223
Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J (2006) Self-referential processing in our brain–a meta-analysis of imaging studies on the self. Neuroimage 31(1):440–457
Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16(2):331–348
Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682
Rombouts S, Scheltens P (2005) Functional connectivity in elderly controls and AD patients using resting state fMRI: a pilot study. Curr Alzheimer Res 2:115–116
Seeley WW et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356
Shattuck DW, Leahy RM (2002) BrainSuite: an automated cortical surface identification tool. Medical Image Anal 6(2):129–142
Song X-W et al (2011) REST: A toolkit for resting-state functional magnetic resonance imaging data processing. PloS One 6(9):e25031. doi:10.1371/journal.pone.0025031
Stamatakis EA, Adapa RM, Absalom AR, Menon DK (2010) Changes in resting neural connectivity during propofol sedation. PloS One 5(12):e14224
Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V (2010) Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52(1):290–301
Tian L et al (2006) Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett 400:39–43
Upadhyay J et al (2011) Default-mode-like network activation in awake rodents. PloS One 6(11):e27839
Van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534
Van den Heuvel MP, Mandl RC, Luigjes J, Pol Hulshoff HE (2008a) Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci 28(43):10844–10851
Van den Heuvel MP, Mandl RC, HulshoffPol HE (2008b) Normalized group clustering of resting-state fMRI data. PloS One 3(4):e2001
Vogt BA, Vogt L, Laureys S (2006) Cytology and functionally correlated circuits of human posterior cingulate areas. Neuroimage 29(2):452–466
Wager TD, Phan KL, Liberzon I, Taylor SF (2003) Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. Neuroimage 19(3):513–531
Wang K et al (2011) Temporal scaling properties and spatial synchronization of spontaneous blood oxygenation level-dependent (BOLD) signal fluctuations in rat sensorimotor network at different levels of isoflurane anesthesia. NMR Biomed 24(1):61–67
Wei L et al (2011) The synchronization of spontaneous BOLD activity predicts extraversion and neuroticism. Brain Res 1419:68–75
Whalley HC et al (2005) Functional disconnectivity in subjects at high genetic risk of schizophrenia. Brain 128:2097–2108
Yang Z et al (2012) Generalized RAICAR: discover homogeneous subject (sub)groups by reproducibility of their intrinsic connectivity networks. Neuroimage 63(1):403–414
Zhang N et al (2010) Mapping resting-state brain networks in conscious animals. J Neurosci Methods 189(2):186–196