Antennas for light
Tóm tắt
Từ khóa
Tài liệu tham khảo
Taminiau, T. H., Stefani, F. D. & van Hulst, N. F. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi–Uda antenna. Opt. Express 16, 10858–10866 (2008).
Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).
Cao, L., Park, J.-S., Fan, P., Clemens, B. & Brongersma, M. L. Resonant Germanium nanoantenna photodetectors. Nano Lett. 10, 1229–1233 (2010).
Cubukcu, E., Kort, E. A., Crozier, K. B. & Capasso, F. Plasmonic laser antenna. Appl. Phys. Lett. 89, 093120 (2006).
Pillai, S., Catchpole, K., Trupke, T. & Green, M. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 093105 (2007).
Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nature Photon. 3, 658–661 (2009).
Novotny, L. & Stranick, S. J. Near-field optical microscopy and spectroscopy with pointed probes. Ann. Rev. Phys. Chem. 57, 303–331 (2006).
Muehlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).
Taminiau, T. H. et al. Resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 7, 28–33 (2007).
Ghenuche, P., Cherukulappurath, S., Taminiau, T. H., van Hulst, N. F. & Quidant, R. Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys. Rev. Lett. 101, 116805 (2008).
Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009).
Kalkbrenner, T. et al. Optical microscopy via spectral modifications of a nanoantenna. Phys. Rev. Lett. 95, 200801 (2005).
Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).
Pohl, D. W. Near-field optics seen as an antenna problem in Near-field Optics, Principles and Applications (eds Zhu, X. & Ohtsu, M.) 9–21 (World Scientific, 2000).
Fischer, U. C. & Pohl, D. W. Observation on single-particle plasmons by near-field optical microscopy. Phys. Rev. Lett. 62, 458–461 (1989).
Hocker, L. O., Sokoloff, D. R., V. Daneu, A. S. & Javan, A. Frequency mixing in the infrared and far-infrared using metal-to-metal point contact diode. Appl. Phys. Lett. 12, 401–402 (1968).
Fetterman, H. R., Clifton, B. J., Tannenwald, P. E. & Parker, C. D. Submillimeter detection and mixing using Schottky diodes. Appl. Phys. Lett. 24, 70–72 (1974).
Fetterman, H. R. et al. Far-IR heterodyne radiometric measurements with quasioptical Schottky diode mixers. Appl. Phys. Lett. 33, 151–153 (1978).
Alda, J., Rico-Garcia, J., Lopez-Alonso, J. & Boreman, G. Optical antennas for nano-photonic applications. Nanotechnology 16, S230–S234 (2005).
Gonzalez, F. & Boreman, G. Comparison of dipole, bowtie, spiral and log-periodic IR antennas. Infrared Phys. Technol. 146, 418–428 (2004).
Grober, R. D., Schoelkopf, R. J. & Prober, D. E. Optical antenna: towards a unity efficiency near-field optical probe. Appl. Phys. Lett. 70, 1354–1356 (1997).
Farahani, J. N., Pohl, D. W., Eisler, H.-J. & Hecht, B. Single quantum dot coupled to a scanning optical antenna: A tunable superemitter. Phys. Rev. Lett. 95, 017402 (2005).
Frey, H. G., Witt, S., Felderer, K. & Guckenberger, R. High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. Phys. Rev. Lett. 93, 200801 (2004).
Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).
Hoeppener, C. & Novotny, L. Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. Nano Lett. 8, 642–646 (2008).
van Zanten, T. S., Lopez-Busquets, M. J. & Garcia-Parajo, M. F. Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna. Small 6, 270–275 (2010).
Hecht, B., Muehlschlegel, P., Farahani, J., Eisler, H.-J. & Pohl, D. W. Resonant optical antennas and single emitters in Tip Enhancement (eds Kawata, S. & Shalaev, V. M.) 275–307 (Elsevier, 2007).
Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).
Crozier, K. B., Sundaramurthy, A., Kino, G. S. & Quate, C. F. Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 94, 4632–4642 (2003).
Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).
Kosako, T., Kadoya, Y. & Hofmann, H. F. Directional control of light by a nano-optical Yagi–Uda antenna. Nature Photon. 4, 312–315 (2010).
Bryant, G. W., de Abajo, F. J. G. & Aizpurua, J. Mapping the plasmon resonances of metallic nanoantennas. Nano Lett. 8, 631–636 (2008).
Sfeir, M. Y. et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 312, 554–556 (2006).
Burke, P. J., Li, S. & Yu, Z. Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans. Nanotech. 5, 314–334 (2006).
Hao, J. & Hanson, G. W. Infrared and optical properties of carbon nanotube dipole antennas. IEEE T. Nanotechnol. 5, 766–775 (2006).
Blankenship, R., Madigan, M. T. & Bauer, C. E. (eds) Anoxygenic Photosynthetic Bacteria (Kluwer, 1995).
Falk, A. L. et al. Near-field electrical detection of optical and single-plasmon sources. Nature Phys. 5, 475–479 (2009).
Bean, J. A., Tiwari, B., Bernstein, G. H., Fay, P. & Porod, W. Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes. J. Vac. Sci. Technnol. B 27, 11–14 (2009).
Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).
Westphal, V. & Hell, S. W. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94, 143903 (2005).
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
Rust, M., Bates, M. & Zhuang, X. Sub-diffraction limit imaging by stochastic optical reconstruction microscopy (storm). Nat. Methods 3, 793–796 (2006).
Sanchez, E. J., Novotny, L. & Xie, X. S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014–4017 (1999).
Gerton, J. M., Wade, L. A., Lessard, G. A., Ma, Z. & Quake, S. R. Tip-enhanced fluorescence microscopy at 10 nanometer resolution. Phys. Rev. Lett. 93, 180801 (2004).
Hartschuh, A., Sanchez, E., Xie, X. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).
Kuehn, S., Hakanson, U., Rogobete, L. & Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006).
Bharadwaj, P. & Novotny, L. Spectral dependence of single molecule fluorescence enhancement. Opt. Express 15, 14266–14274 (2007).
Weber-Bargioni, A. et al. Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography. Nanotechnology 21, 065306 (2010).
Palomba, S. & Novotny, L. Near-field imaging with a localized nonlinear light source. Nano Lett. 9, 3801–1804 (2009).
Rodriguez-Lorenzo, L. et al. Zeptomol detection through controlled ultrasensitive surface enhanced Raman scattering. J. Am. Chem. Soc. 131, 4616–4618 (2009).
Renger, J., Quidant, R., Hulst, N. V. & Novotny, L. Surface enhanced nonlinear four-wave mixing. Phys. Rev. Lett. 104, 046803 (2010).
Danckwerts, M. & Novotny, L. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007).
Bouhelier, A., Beversluis, M., Hartschuh, A. & Novotny, L. Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003).
Lippitz, M., van Dijk, M. A. & Orrit, M. Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005).
Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).
Bouhelier, A., Beversluis, M. R. & Novotny, L. Characterization of nanoplasmonic structures by locally excited photoluminescence. Appl. Phys. Lett. 83, 5041–5043 (2003).
Schuck, P., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).
Alu, A. & Engheta, N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys. Rev. Lett. 101, 043901 (2008).
Alu, A. & Engheta, N. Hertzian plasmonic nanodimer as an efficient optical nanoantenna. Phys. Rev. B 78, 195111 (2008).
Olmon, R. L., Krenz, P. M., Jones, A. C., Boreman, G. D. & Raschke, M. B. Near-field imaging of optical antenna modes in the mid-infrared. Opt. Express 16, 20295–20305 (2008).
Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nature Photon. 3, 287–291 (2009).
Taminiau, T. H., Stefani, F. D., Segerink, F. B. & van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).
Hofmann, H. F., Kosako, T. & Kadoya, Y. Design parameters for a nano-optical Yagi–Uda antenna. New J. Phys. 9, 217–217 (2007).
Li, J., Salandrino, A. & Engheta, N. Shaping light beams in the nanometer scale: A Yagi–Uda nanoantenna in the optical domain. Phys. Rev. B 76, 245403 (2007).
Guo, H. et al. Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt. Express 16, 7756–7766 (2008).
Biagioni, P., Huang, J. S., Duò, L., Finazzi, M. & Hecht, B. Cross resonant optical antenna. Phys. Rev. Lett. 102, 256801 (2009).
Esteban, R., Teperik, T. V. & Greffet, J.-J. Optical patch antennas for single photon emission using surface plasmon resonances. Phys. Rev. Lett. 104, 026802 (2010).
Abdel-Rahman, M. R., Monacelli, B., Weeks, A. R., Zummo, G. & Boreman, G. D. Design, fabrication and characterization of antenna-coupled metal-oxide-metal diodes for dual-band detection. Opt. Eng. 44, 066401 (2005).
Li, K., Stockman, M. I. & Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003).
Puente-Biliarda, C., Romeu, J., Pous, R. & Cardama, A. On the behavior of the sierpinski multiband fractal antenna. IEEE T. Antenn. Propag. 46, 517–524 (1998).
Curto, A. G., Manjavacas, A. & de Abajo, F. J. G. Near-field focusing with optical phase antennas. Opt. Express 17, 17801–17811 (2009).
Huang, C. et al. Gain, detuning, and radiation patterns of nanoparticles optical antennas. Phys. Rev. B 88, 155407 (2008).
Huang, J.-S., Feichtner, T., Biagioni, P. & Hecht, B. Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett. 9, 1897–1902 (2009).
Berthelot, J. et al. Tuning of an optical dimer nanoantenna by electrically controlling its load impedance. Nano Lett. 9, 3914–3921 (2009).
Greffet, J.-J., Laroche, M. & Marquier, F. Impedance of a nanoantenna and a single quantum emitter. Phys. Rev. Lett. 105, 117701 (2010).
Gimzewski, J. K., Reihl, B., Coombs, J. H. & Schlittler, R. R. Photon emission with the scanning tunneling microscope. Z. Phys. B 72, 497–501 (1988).
Schull, G., Nel, N., Johanson, P. & Berndt, R. Electron–plasmon and electron–electron interactions at a single atom contact. Phys. Rev. Lett. 102, 057401 (2009).
Johansson, P., Monreal, R. & Apell, P. Theory for light emission from a scanning tunneling microscope. Phys. Rev. B 42, 9210–9213 (1990).
Persson, B. N. J. & Baratoff, A. Theory of photon emission in electron tunneling to metallic particles. Phys. Rev. B 68, 3224–3227 (1992).
Zurita-Sanchez, J. R. & Novotny, L. Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement. J. Opt. Soc. Am. B 19, 1355–1362 (2002).
Beversluis, M. R., Bouhelier, A. & Novotny, L. Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003).
Shalaev, V. M., Douketis, C., Haslett, T., Stuckless, T. & Moskovits, M. Two-photon electron emission from smooth and rough metal films in the threshold region. Phys. Rev. B 53, 11193–11206 (1996).
Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).
Averitt, R. D., Sarkar, D. & Halas, N. J. Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth. Phys. Rev. Lett. 78, 4217–4220 (1997).
Bharadwaj, P. & Novotny, L. Plasmon-enhanced photoemission from a single Y3N@C80 fullerene. J. Phys. Chem. C 114, 7444–7447 (2010).
Huang, J.-S. et al. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Comm. 1, 150 (2010).
Challener, W. A. et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nature Photon. 3, 220–224 (2009).