Anoxic survival potential of bivalves: (arte)facts

Albertus de Zwaan1, Jose M.F Babarro1, Marta Monari2, Otello Cattani2
1Netherlands Institute of Ecology, Centre for Estuarine and Coastal Ecology, P.O. Box 140, 4400 AC Yerseke, The Netherlands
2Department of Biochemistry, Veterinary Section, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy

Tài liệu tham khảo

Babarro, 2001, Factors involved in the (near) anoxic survival time of Cerastoderma edule: associated bacteria vs. endogenous fuel, Comp. Biochem. Physiol. C, 128, 325 Bachelet, 1980, Growth and recruitment of the Tellinid bivalve Macoma balthica at the southern limit if its geographical distribution, the Gironde Estuary, Mar. Biol., 59, 105, 10.1007/BF00405460 Beukema, 1985, Latitudinal variation in linear growth and other shell characteristics of Macoma balthica, Mar. Biol., 90, 27, 10.1007/BF00428211 Brooks, 1991, Differential survival of Venus gallina and Scapharca inaequivalvis during anoxic stress: Covalent modifications of phosphofructokinase and glycogen phosphorylase during anoxia, J. Comp. Physiol. B, 161, 207, 10.1007/BF00262885 de Zwaan, 1992, Cellular biochemistry and endocrinology, 25, 223 de Zwaan, 1996, Anoxic or aerial survival of bivalves and other euroxic invertebrates as a useful response to environmental stress — a comprehensive review, Comp. Biochem. Physiol. C, 113, 299 de Zwaan, A., Babarro, J.M.F. Studies on the causes of mortality of the estuarine bivalve Macoma balthica under conditions of (near) anoxia. Mar. Biol. 2001;1021–8. de Zwaan, 1991, Differential sensitivities to hypoxia by two anoxia-tolerant marine molluscs: a biochemical analysis, Mar. Biol., 111, 343, 10.1007/BF01319405 de Zwaan, 2001, Anoxic survival of Macoma balthica: the effect of antibiotics, molybdate and sulphide, J. Exp. Mar. Biol. Ecol., 256, 241, 10.1016/S0022-0981(00)00318-X de Zwaan, 2001, Influence of incubation conditions on the anoxic survival of marine bivalves. Static and semi-static incubations, Mar. Ecol. Prog. Ser., 211, 169, 10.3354/meps211169 de Zwaan, A., Babarro, J.M.F., Cattani, O., Cortesi, P., 2001c. Anoxis survival potential of bivalves: pathogens versus biochemical adaptations. Ital. J. Biochem. 50. Diaz, 1995, Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna, Ocean Mar. Biol. Annu. Rev., 33, 245 Dries, 1974, Sauerstoffmangelresistenz mariner Bodenevertebraten aus der Westlichen Ostsee, Mar. Biol., 25, 327, 10.1007/BF00404975 Ducrotoy, 1991, A comparison of the population dynamics of the cockle (Cerastoderma edule L.) in Western Europe, 173 Ernst, A., Bogaards, R., Babarro, J.M.F., de Zwaan, A., 2001. Sulfate reducing bacteria thriving on products excreted by bivalves under anoxic stress. Abstract ISME-9, Amsterdam, 26–31 August, in press. Felder, 1979, Respiratory adaptations of the estuarine mud shrimp, Callianassa jamaicense (Schmitt, 1935) (Crustacea, Decapoda, Thalassinidea), Biol. Bull., 157, 125, 10.2307/1541082 Ghisotti, 1996, Osservazioni sulla popolazione del Scapharca insediatasi in questi ultimi anni su un tratto di littorale romagnoto, Conchiglie (Un. Malac. Ital. Milano), 12, 183 Groenendaal, 1980, Tolerance of the lugworm (Arenicola marina) to sulphide, Neth. J. Sea Res., 14, 200, 10.1016/0077-7579(80)90022-8 Hamilton, 1997, Trimmed Spearmen–Karber method for estimating median lethal concentrations in toxicity bioassays, Environ. Sci. Technol., 11, 714, 10.1021/es60130a004 Hammen, C.S., 1976. Respiratory adaptations: invertebrates. In: Wiley. M., editor. Estuarine Processes. Uses, Stresses and Adaptations to the Estuary. vol. 1. Academic Press, 347–355. Kaplan, 1958, Nonparametric estimation from incomplete observations, J. Am. Stat. Assoc., 53, 457, 10.1080/01621459.1958.10501452 Llansó, 1994, Tolerance to low dissolved oxygen by the tubicolous polychaete Loimia medusa, J. Mar. Biol. Assoc. UK, 74, 143, 10.1017/S0025315400035724 Modig, 1998, Responses of Baltic benthic invertebrates to hypoxic events, J. Exp. Mar. Biol. Ecol., 229, 133, 10.1016/S0022-0981(98)00043-4 Oeschger, 1988, Use of biochemical features of macrobenthic speies as indicators of long-term oxygen deficiency, Kieler Meeresforsch. Sonderh., 6, 99 Pampanin, D.M., Carotenuto, L., Ballarin, J., Marin, M.G., 2001. Effects of anoxia on functionality of Chamelea gallina haemocytes. Comp Biochem Physiol, this volume. Roch, 1999, Defense mechanisms and disease prevention in farmed marine invertebrates, Aquaculture, 172, 125, 10.1016/S0044-8486(98)00439-6 Rosenberg, 1991, Hypoxic tolerance of marine benthic fauna, Mar. Ecol. Prog. Ser., 79, 127, 10.3354/meps079127 Storey, 1990, Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation, Quart. Rev. Biol., 65, 145, 10.1086/416717 Svenson, 1980, A rapid and sensitive spectrophotometric method for determination of hydrogen sulfide with 2,21-dipyridyl disulfide, Anal. Biochem., 107, 51, 10.1016/0003-2697(80)90490-X Theede, 1973, Comparative studies on the influence of oxygen deficiency and hydrogen sulphide on marine bottom invertebrates, Neth. J. Sea Res., 7, 244, 10.1016/0077-7579(73)90048-3 Theede, 1969, Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide, Mar. Biol., 2, 325, 10.1007/BF00355712 van den Thillart, 1992, Influence of long-term hypoxia on the energy metabolism of the haemoglobin-containing bivalve Scapharca inaequivalvis: critical O2 levels for metabolic depression, J. Comp. Physiol. B, 162, 297, 10.1007/BF00260756 Truesdale, 1971, A modified spectrophotometric method for the determination of ammonia (and amino-acids) in natural waters, with particular reference to sea water, Analist., 96, 584, 10.1039/an9719600584 von Brand, T. Anaerobiosis in invertebrates. In: BJ Luyet, editor. Biodynamica Monographs, No. 4. Biodinamica, Normandy 21 Missouri, 1943, p. 328.