Anode-free sodium metal batteries as rising stars for lithium-ion alternatives
Tài liệu tham khảo
Turner, 2022, The matter of a clean energy future, Science, 376, 1361, 10.1126/science.add5094
Viswanathan, 2022, The challenges and opportunities of battery-powered flight, Nature, 601, 519, 10.1038/s41586-021-04139-1
Gao, 2020, Advances in the chemistry and applications of alkali-metal-gas batteries, Nat. Rev. Chem, 4, 566, 10.1038/s41570-020-00224-7
Bates, 2022, Are solid-state batteries safer than lithium-ion batteries?, Joule, 6, 742, 10.1016/j.joule.2022.02.007
2021
Schmuch, 2018, Performance and cost of materials for lithium-based rechargeable automotive batteries, Nat. Energy, 3, 267, 10.1038/s41560-018-0107-2
Sawicki, 2015, Advances and challenges of sodium ion batteries as post lithium ion batteries, RSC Adv., 5, 53129, 10.1039/C5RA08321D
Barnhart, 2013, On the importance of reducing the energetic and material demands of electrical energy storage, Energy Environ. Sci., 6, 1083, 10.1039/c3ee24040a
Harper, 2019, Recycling lithium-ion batteries from electric vehicles, Nature, 575, 75, 10.1038/s41586-019-1682-5
Albertus, 2018, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy, 3, 16, 10.1038/s41560-017-0047-2
Schneider, 2019, A modeling framework to assess specific energy, costs and environmental impacts of Li-ion and Na-ion batteries, Sustain. Energy Fuels, 3, 3061, 10.1039/C9SE00427K
Abraham, 2020, How comparable are sodium-ion batteries to lithium-ion counterparts?, ACS Energy Lett., 5, 3544, 10.1021/acsenergylett.0c02181
Zhang, 2021, Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage, Mater. Today, 50, 400, 10.1016/j.mattod.2021.03.015
Onstad, 2021
Frazelle, 2020, Battery Day: a closer look at the technology that makes portable electronics possible, Queue, 18, 5
Nanda, 2021, Anode-free full cells: a pathway to high-energy density lithium-metal batteries, Adv. Energy Mater., 11, 2000804, 10.1002/aenm.202000804
Nanda, 2020, Anode-free, lean-electrolyte lithium-sulfur batteries enabled by tellurium-stabilized lithium deposition, Joule, 4, 1121, 10.1016/j.joule.2020.03.020
Qiao, 2021, A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent, Nat. Energy, 6, 653, 10.1038/s41560-021-00839-0
Tian, 2020, Recently advances and perspectives of anode-free rechargeable batteries, Nano Energy, 78, 105344, 10.1016/j.nanoen.2020.105344
Wang, 2021, High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells, Nat. Commun., 12, 6536, 10.1038/s41467-021-26859-8
Xie, 2020, Anode-free rechargeable lithium metal batteries: progress and prospects, Energy Storage Mater., 32, 386, 10.1016/j.ensm.2020.07.004
Zhang, 2019, Anode-less, Nat. Energy, 4, 637, 10.1038/s41560-019-0449-4
Hagos, 2019, Dual electrolyte additives of potassium hexafluorophosphate and tris(trimethylsilyl)phosphite for anode-free lithium metal batteries, Electrochim. Acta, 316, 52, 10.1016/j.electacta.2019.05.061
Li, 2022, Interfacial engineering to achieve an energy density of over 200 Wh kg-1 in sodium batteries, Nat. Energy, 7, 511, 10.1038/s41560-022-01033-6
Usiskin, 2021, Fundamentals, status and promise of sodium-based batteries, Nat. Rev. Mater., 6, 1020, 10.1038/s41578-021-00324-w
Yang, 2019, Mega high utilization of sodium metal anodes enabled by single zinc atom sites, Nano Lett., 19, 7827, 10.1021/acs.nanolett.9b02833
Sun, 2018, Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries, Adv. Mater., 30, 1801334, 10.1002/adma.201801334
Wan, 2020, Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode, Nat. Commun., 11, 829, 10.1038/s41467-020-14550-3
Wang, 2017, Processable and moldable sodium-metal anodes, Angew. Chem. Int. Ed. Engl., 129, 12083, 10.1002/ange.201703937
Park, 2019, Quantifying the trade-off between absolute capacity and rate performance in battery electrodes, Adv. Energy Mater., 9, 1901359, 10.1002/aenm.201901359
Peters, 2016, Life cycle assessment of sodium-ion batteries, Energy Environ. Sci., 9, 1744, 10.1039/C6EE00640J
Vaalma, 2018, A cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater., 3, 18013, 10.1038/natrevmats.2018.13
Morgan, 1980, Chemical composition of earth, venus, and mercury, Proc. Natl. Acad. Sci. USA., 77, 6973, 10.1073/pnas.77.12.6973
2022, Mineral Commodity Summaries 2022, U.S. Geological Survey
Fan, 2020, Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects, Chem. Rev., 120, 7020, 10.1021/acs.chemrev.9b00535
Chen, 2019, Recycling end-of-life electric vehicle lithium-ion batteries, Joule, 3, 2622, 10.1016/j.joule.2019.09.014
Goikolea, 2020, Na-ion batteries-approaching old and new challenges, Adv. Energy Mater., 10, 2002055, 10.1002/aenm.202002055
2022
Farchy, 2022
Slater, 2013, Sodium-ion batteries, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691
Kane, 2022
2021
Lin, 2022, A better choice to achieve high volumetric energy density: anode-free lithium-metal batteries, Adv. Mater., 34, e2110323, 10.1002/adma.202110323
Zhao, 2021, Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries, Angew. Chem. Int. Ed. Engl., 60, 2208, 10.1002/anie.202000262
Zuo, 2020, Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques, Energy Environ. Sci., 13, 4450, 10.1039/D0EE01694B
Li, 2020, Anionic redox in Na-based layered oxide cathodes: a review with focus on mechanism studies, Mater. Today Energy, 17, 100474, 10.1016/j.mtener.2020.100474
Park, 2021, Anionic redox reactions in cathodes for sodium-ion batteries, Chemelectrochem, 8, 625, 10.1002/celc.202001383
Yu, 2021, Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries, Energy Storage Mater., 38, 130, 10.1016/j.ensm.2021.03.004
Xu, 2019, Review on anionic redox in sodium-ion batteries, J. Mater. Chem., 7, 23662, 10.1039/C9TA06389G
Tang, 2018, Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries, Nano Res., 11, 3979, 10.1007/s12274-018-1979-y
Wang, 2020, Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries, Nat. Commun., 11, 980, 10.1038/s41467-020-14444-4
Park, 2011, A novel lithium-doping approach for an advanced lithium ion capacitor, Adv. Energy Mater., 1, 1002, 10.1002/aenm.201100270
Zhang, 2018, An in-situ enabled lithium metal battery by plating lithium on a copper current collector, Electrochem. Commun., 89, 23, 10.1016/j.elecom.2018.02.011
Park, 2012, LiFeO2-Incorporated Li2MoO3 as a cathode additive for lithium-ion battery safety, Chem. Mater., 24, 2673, 10.1021/cm300505y
Ye, 2022, In-situ construction of a NaF-rich cathode-electrolyte interface on Prussian blue toward a 3000-cycle-life sodium-ion battery, Mater. Today Energy, 23, 100898, 10.1016/j.mtener.2021.100898
Hu, 2020, Concentration-gradient prussian blue cathodes for Na-ion batteries, ACS Energy Lett., 5, 100, 10.1021/acsenergylett.9b02410
Gebert, 2021, Epitaxial nickel ferrocyanide stabilizes jahn-teller distortions of manganese ferrocyanide for sodium-ion batteries, Angew. Chem. Int. Ed. Engl., 60, 18519, 10.1002/anie.202106240
Li, 2020, New concepts in electrolytes, Chem. Rev., 120, 6783, 10.1021/acs.chemrev.9b00531
Borodin, 2020, Uncharted waters: super-concentrated electrolytes, Joule, 4, 69, 10.1016/j.joule.2019.12.007
Dubouis, 2021, Extending insertion electrochemistry to soluble layered halides with superconcentrated electrolytes, Nat. Mater., 20, 1545, 10.1038/s41563-021-01060-w
Hwang, 2021, Improvement of electrochemical stability using the eutectic composition of a ternary molten salt system for highly concentrated electrolytes for Na-ion batteries, ACS Appl. Mater. Interfaces, 13, 2538, 10.1021/acsami.0c17807
Qian, 2016, Anode-free rechargeable lithium metal batteries, Adv. Funct. Mater., 26, 7094, 10.1002/adfm.201602353
Beyene, 2019, Effects of concentrated salt and resting protocol on solid electrolyte interface formation for improved cycle stability of anode-free lithium metal batteries, ACS Appl. Mater. Interfaces, 11, 31962, 10.1021/acsami.9b09551
Huang, 2021, Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries, Nat. Commun., 12, 1452, 10.1038/s41467-021-21683-6
Sun, 2021, Anion-derived solid-electrolyte interphase enables long life Na-ion batteries using superconcentrated ionic liquid electrolytes, ACS Energy Lett., 6, 2481, 10.1021/acsenergylett.1c00816
Lu, 2022, Building a beyond concentrated electrolyte for high-voltage anode-free rechargeable sodium batteries, Angew. Chem. Int. Ed. Engl., 61, e202200410, 10.1002/anie.202200410
Chen, 2018, Na-ion solvation and high transference number in superconcentrated ionic liquid electrolytes: a theoretical approach, J. Phys. Chem. C, 122, 105, 10.1021/acs.jpcc.7b09322
Zhao, 2018, Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries, Energy Environ. Sci., 11, 2673, 10.1039/C8EE01373J
Xia, 2022, Homogeneous Na deposition enabling high-energy Na-metal batteries, Adv. Funct. Mater., 32, 2110280, 10.1002/adfm.202110280
Liu, 2021, Recent development of Na metal anodes: interphase engineering chemistries determine the electrochemical performance, Chem. Eng. J., 409, 127943, 10.1016/j.cej.2020.127943
Luo, 2017, Ultrathin surface coating enables the stable sodium metal anode, Adv. Energy Mater., 7, 1601526, 10.1002/aenm.201601526
Tian, 2017, Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes, Adv. Energy Mater., 7, 1602528, 10.1002/aenm.201602528
Snydacker, 2017, Electrochemically stable coating materials for Li, Na, and Mg metal anodes in durable high energy batteries, J. Electrochem. Soc., 164, A3582, 10.1149/2.0371714jes
Wang, 2022, A sodium-antimony-telluride intermetallic allows sodium-metal cycling at 100% depth of discharge and as an anode-free metal battery, Adv. Mater., 34, 2106005, 10.1002/adma.202106005
Hou, 2020, Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode, Energy Storage Mater., 24, 588, 10.1016/j.ensm.2019.06.026
Jung, 2019, Deterministic growth of a sodium metal anode on a pre-patterned current collector for highly rechargeable seawater batteries, J. Mater. Chem., 7, 9773, 10.1039/C9TA01718F
Cohn, 2017, Anode-free sodium battery through in situ plating of sodium metal, Nano Lett., 17, 1296, 10.1021/acs.nanolett.6b05174
Mazzali, 2019, Designing a high-power sodium-ion battery by in situ metal plating, ACS Appl. Energy Mater., 2, 344, 10.1021/acsaem.8b01361
Tang, 2018, A room-temperature sodium metal anode enabled by a sodiophilic layer, Nano Energy, 48, 101, 10.1016/j.nanoen.2018.03.039
Lee, 2019, Catalytic pyroprotein seed layers for sodium metal anodes, ACS Appl. Mater. Interfaces, 11, 12401, 10.1021/acsami.8b15938
Zhao, 2017, Superior stable and long life sodium metal anodes achieved by atomic layer deposition, Adv. Mater., 29, 1606663, 10.1002/adma.201606663
Li, 2022, Sodiophilic current collectors based on MOF-derived nanocomposites for anode-less Na-metal batteries, Adv. Energy Mater., 12, 2202293, 10.1002/aenm.202202293
Louli, 2020, Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis, Nat. Energy, 5, 693, 10.1038/s41560-020-0668-8
Eldesoky, 2021, Cycling performance of NMC811 anode-free pouch cells with 65 different electrolyte formulations, J. Electrochem. Soc., 168, 120508, 10.1149/1945-7111/ac39e3
Weber, 2019, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte, Nat. Energy, 4, 683, 10.1038/s41560-019-0428-9
Chen, 2022, High energy density Na-metal batteries enabled by a tailored carbonate-based electrolyte, Energy Environ. Sci., 15, 3360, 10.1039/D2EE01257J
Sahalie, 2019, Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte, J. Power Sources, 437, 226912, 10.1016/j.jpowsour.2019.226912
Tan, 2020, From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries, Nat. Nanotechnol., 15, 170, 10.1038/s41565-020-0657-x
Tomich, 2022, A carboranyl electrolyte enabling highly reversible sodium metal anodes via a “Fluorine-Free” SEI, Angew. Chem. Int. Ed. Engl., 61, e202208158, 10.1002/anie.202208158
Kim, 2020, The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte, Adv. Energy Mater., 10, 1903993, 10.1002/aenm.201903993
Li, 2022, Negating Na‖Na3Zr2Si2PO12 interfacial resistance for dendrite-free and “Na-less” solid-state batteries, Chem. Sci., 13, 14132, 10.1039/D2SC05120F