Anode-free sodium metal batteries as rising stars for lithium-ion alternatives

iScience - Tập 26 - Trang 105982 - 2023
Tingzhou Yang1, Dan Luo1,2, Yizhou Liu2, Aiping Yu1, Zhongwei Chen1
1Waterloo Institute for Nanotechnology, Department of Chemical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
2School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong, 510006, China

Tài liệu tham khảo

Turner, 2022, The matter of a clean energy future, Science, 376, 1361, 10.1126/science.add5094 Viswanathan, 2022, The challenges and opportunities of battery-powered flight, Nature, 601, 519, 10.1038/s41586-021-04139-1 Gao, 2020, Advances in the chemistry and applications of alkali-metal-gas batteries, Nat. Rev. Chem, 4, 566, 10.1038/s41570-020-00224-7 Bates, 2022, Are solid-state batteries safer than lithium-ion batteries?, Joule, 6, 742, 10.1016/j.joule.2022.02.007 2021 Schmuch, 2018, Performance and cost of materials for lithium-based rechargeable automotive batteries, Nat. Energy, 3, 267, 10.1038/s41560-018-0107-2 Sawicki, 2015, Advances and challenges of sodium ion batteries as post lithium ion batteries, RSC Adv., 5, 53129, 10.1039/C5RA08321D Barnhart, 2013, On the importance of reducing the energetic and material demands of electrical energy storage, Energy Environ. Sci., 6, 1083, 10.1039/c3ee24040a Harper, 2019, Recycling lithium-ion batteries from electric vehicles, Nature, 575, 75, 10.1038/s41586-019-1682-5 Albertus, 2018, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy, 3, 16, 10.1038/s41560-017-0047-2 Schneider, 2019, A modeling framework to assess specific energy, costs and environmental impacts of Li-ion and Na-ion batteries, Sustain. Energy Fuels, 3, 3061, 10.1039/C9SE00427K Abraham, 2020, How comparable are sodium-ion batteries to lithium-ion counterparts?, ACS Energy Lett., 5, 3544, 10.1021/acsenergylett.0c02181 Zhang, 2021, Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage, Mater. Today, 50, 400, 10.1016/j.mattod.2021.03.015 Onstad, 2021 Frazelle, 2020, Battery Day: a closer look at the technology that makes portable electronics possible, Queue, 18, 5 Nanda, 2021, Anode-free full cells: a pathway to high-energy density lithium-metal batteries, Adv. Energy Mater., 11, 2000804, 10.1002/aenm.202000804 Nanda, 2020, Anode-free, lean-electrolyte lithium-sulfur batteries enabled by tellurium-stabilized lithium deposition, Joule, 4, 1121, 10.1016/j.joule.2020.03.020 Qiao, 2021, A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent, Nat. Energy, 6, 653, 10.1038/s41560-021-00839-0 Tian, 2020, Recently advances and perspectives of anode-free rechargeable batteries, Nano Energy, 78, 105344, 10.1016/j.nanoen.2020.105344 Wang, 2021, High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells, Nat. Commun., 12, 6536, 10.1038/s41467-021-26859-8 Xie, 2020, Anode-free rechargeable lithium metal batteries: progress and prospects, Energy Storage Mater., 32, 386, 10.1016/j.ensm.2020.07.004 Zhang, 2019, Anode-less, Nat. Energy, 4, 637, 10.1038/s41560-019-0449-4 Hagos, 2019, Dual electrolyte additives of potassium hexafluorophosphate and tris(trimethylsilyl)phosphite for anode-free lithium metal batteries, Electrochim. Acta, 316, 52, 10.1016/j.electacta.2019.05.061 Li, 2022, Interfacial engineering to achieve an energy density of over 200 Wh kg-1 in sodium batteries, Nat. Energy, 7, 511, 10.1038/s41560-022-01033-6 Usiskin, 2021, Fundamentals, status and promise of sodium-based batteries, Nat. Rev. Mater., 6, 1020, 10.1038/s41578-021-00324-w Yang, 2019, Mega high utilization of sodium metal anodes enabled by single zinc atom sites, Nano Lett., 19, 7827, 10.1021/acs.nanolett.9b02833 Sun, 2018, Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries, Adv. Mater., 30, 1801334, 10.1002/adma.201801334 Wan, 2020, Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode, Nat. Commun., 11, 829, 10.1038/s41467-020-14550-3 Wang, 2017, Processable and moldable sodium-metal anodes, Angew. Chem. Int. Ed. Engl., 129, 12083, 10.1002/ange.201703937 Park, 2019, Quantifying the trade-off between absolute capacity and rate performance in battery electrodes, Adv. Energy Mater., 9, 1901359, 10.1002/aenm.201901359 Peters, 2016, Life cycle assessment of sodium-ion batteries, Energy Environ. Sci., 9, 1744, 10.1039/C6EE00640J Vaalma, 2018, A cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater., 3, 18013, 10.1038/natrevmats.2018.13 Morgan, 1980, Chemical composition of earth, venus, and mercury, Proc. Natl. Acad. Sci. USA., 77, 6973, 10.1073/pnas.77.12.6973 2022, Mineral Commodity Summaries 2022, U.S. Geological Survey Fan, 2020, Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects, Chem. Rev., 120, 7020, 10.1021/acs.chemrev.9b00535 Chen, 2019, Recycling end-of-life electric vehicle lithium-ion batteries, Joule, 3, 2622, 10.1016/j.joule.2019.09.014 Goikolea, 2020, Na-ion batteries-approaching old and new challenges, Adv. Energy Mater., 10, 2002055, 10.1002/aenm.202002055 2022 Farchy, 2022 Slater, 2013, Sodium-ion batteries, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691 Kane, 2022 2021 Lin, 2022, A better choice to achieve high volumetric energy density: anode-free lithium-metal batteries, Adv. Mater., 34, e2110323, 10.1002/adma.202110323 Zhao, 2021, Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries, Angew. Chem. Int. Ed. Engl., 60, 2208, 10.1002/anie.202000262 Zuo, 2020, Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques, Energy Environ. Sci., 13, 4450, 10.1039/D0EE01694B Li, 2020, Anionic redox in Na-based layered oxide cathodes: a review with focus on mechanism studies, Mater. Today Energy, 17, 100474, 10.1016/j.mtener.2020.100474 Park, 2021, Anionic redox reactions in cathodes for sodium-ion batteries, Chemelectrochem, 8, 625, 10.1002/celc.202001383 Yu, 2021, Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries, Energy Storage Mater., 38, 130, 10.1016/j.ensm.2021.03.004 Xu, 2019, Review on anionic redox in sodium-ion batteries, J. Mater. Chem., 7, 23662, 10.1039/C9TA06389G Tang, 2018, Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries, Nano Res., 11, 3979, 10.1007/s12274-018-1979-y Wang, 2020, Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries, Nat. Commun., 11, 980, 10.1038/s41467-020-14444-4 Park, 2011, A novel lithium-doping approach for an advanced lithium ion capacitor, Adv. Energy Mater., 1, 1002, 10.1002/aenm.201100270 Zhang, 2018, An in-situ enabled lithium metal battery by plating lithium on a copper current collector, Electrochem. Commun., 89, 23, 10.1016/j.elecom.2018.02.011 Park, 2012, LiFeO2-Incorporated Li2MoO3 as a cathode additive for lithium-ion battery safety, Chem. Mater., 24, 2673, 10.1021/cm300505y Ye, 2022, In-situ construction of a NaF-rich cathode-electrolyte interface on Prussian blue toward a 3000-cycle-life sodium-ion battery, Mater. Today Energy, 23, 100898, 10.1016/j.mtener.2021.100898 Hu, 2020, Concentration-gradient prussian blue cathodes for Na-ion batteries, ACS Energy Lett., 5, 100, 10.1021/acsenergylett.9b02410 Gebert, 2021, Epitaxial nickel ferrocyanide stabilizes jahn-teller distortions of manganese ferrocyanide for sodium-ion batteries, Angew. Chem. Int. Ed. Engl., 60, 18519, 10.1002/anie.202106240 Li, 2020, New concepts in electrolytes, Chem. Rev., 120, 6783, 10.1021/acs.chemrev.9b00531 Borodin, 2020, Uncharted waters: super-concentrated electrolytes, Joule, 4, 69, 10.1016/j.joule.2019.12.007 Dubouis, 2021, Extending insertion electrochemistry to soluble layered halides with superconcentrated electrolytes, Nat. Mater., 20, 1545, 10.1038/s41563-021-01060-w Hwang, 2021, Improvement of electrochemical stability using the eutectic composition of a ternary molten salt system for highly concentrated electrolytes for Na-ion batteries, ACS Appl. Mater. Interfaces, 13, 2538, 10.1021/acsami.0c17807 Qian, 2016, Anode-free rechargeable lithium metal batteries, Adv. Funct. Mater., 26, 7094, 10.1002/adfm.201602353 Beyene, 2019, Effects of concentrated salt and resting protocol on solid electrolyte interface formation for improved cycle stability of anode-free lithium metal batteries, ACS Appl. Mater. Interfaces, 11, 31962, 10.1021/acsami.9b09551 Huang, 2021, Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries, Nat. Commun., 12, 1452, 10.1038/s41467-021-21683-6 Sun, 2021, Anion-derived solid-electrolyte interphase enables long life Na-ion batteries using superconcentrated ionic liquid electrolytes, ACS Energy Lett., 6, 2481, 10.1021/acsenergylett.1c00816 Lu, 2022, Building a beyond concentrated electrolyte for high-voltage anode-free rechargeable sodium batteries, Angew. Chem. Int. Ed. Engl., 61, e202200410, 10.1002/anie.202200410 Chen, 2018, Na-ion solvation and high transference number in superconcentrated ionic liquid electrolytes: a theoretical approach, J. Phys. Chem. C, 122, 105, 10.1021/acs.jpcc.7b09322 Zhao, 2018, Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries, Energy Environ. Sci., 11, 2673, 10.1039/C8EE01373J Xia, 2022, Homogeneous Na deposition enabling high-energy Na-metal batteries, Adv. Funct. Mater., 32, 2110280, 10.1002/adfm.202110280 Liu, 2021, Recent development of Na metal anodes: interphase engineering chemistries determine the electrochemical performance, Chem. Eng. J., 409, 127943, 10.1016/j.cej.2020.127943 Luo, 2017, Ultrathin surface coating enables the stable sodium metal anode, Adv. Energy Mater., 7, 1601526, 10.1002/aenm.201601526 Tian, 2017, Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes, Adv. Energy Mater., 7, 1602528, 10.1002/aenm.201602528 Snydacker, 2017, Electrochemically stable coating materials for Li, Na, and Mg metal anodes in durable high energy batteries, J. Electrochem. Soc., 164, A3582, 10.1149/2.0371714jes Wang, 2022, A sodium-antimony-telluride intermetallic allows sodium-metal cycling at 100% depth of discharge and as an anode-free metal battery, Adv. Mater., 34, 2106005, 10.1002/adma.202106005 Hou, 2020, Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode, Energy Storage Mater., 24, 588, 10.1016/j.ensm.2019.06.026 Jung, 2019, Deterministic growth of a sodium metal anode on a pre-patterned current collector for highly rechargeable seawater batteries, J. Mater. Chem., 7, 9773, 10.1039/C9TA01718F Cohn, 2017, Anode-free sodium battery through in situ plating of sodium metal, Nano Lett., 17, 1296, 10.1021/acs.nanolett.6b05174 Mazzali, 2019, Designing a high-power sodium-ion battery by in situ metal plating, ACS Appl. Energy Mater., 2, 344, 10.1021/acsaem.8b01361 Tang, 2018, A room-temperature sodium metal anode enabled by a sodiophilic layer, Nano Energy, 48, 101, 10.1016/j.nanoen.2018.03.039 Lee, 2019, Catalytic pyroprotein seed layers for sodium metal anodes, ACS Appl. Mater. Interfaces, 11, 12401, 10.1021/acsami.8b15938 Zhao, 2017, Superior stable and long life sodium metal anodes achieved by atomic layer deposition, Adv. Mater., 29, 1606663, 10.1002/adma.201606663 Li, 2022, Sodiophilic current collectors based on MOF-derived nanocomposites for anode-less Na-metal batteries, Adv. Energy Mater., 12, 2202293, 10.1002/aenm.202202293 Louli, 2020, Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis, Nat. Energy, 5, 693, 10.1038/s41560-020-0668-8 Eldesoky, 2021, Cycling performance of NMC811 anode-free pouch cells with 65 different electrolyte formulations, J. Electrochem. Soc., 168, 120508, 10.1149/1945-7111/ac39e3 Weber, 2019, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte, Nat. Energy, 4, 683, 10.1038/s41560-019-0428-9 Chen, 2022, High energy density Na-metal batteries enabled by a tailored carbonate-based electrolyte, Energy Environ. Sci., 15, 3360, 10.1039/D2EE01257J Sahalie, 2019, Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte, J. Power Sources, 437, 226912, 10.1016/j.jpowsour.2019.226912 Tan, 2020, From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries, Nat. Nanotechnol., 15, 170, 10.1038/s41565-020-0657-x Tomich, 2022, A carboranyl electrolyte enabling highly reversible sodium metal anodes via a “Fluorine-Free” SEI, Angew. Chem. Int. Ed. Engl., 61, e202208158, 10.1002/anie.202208158 Kim, 2020, The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte, Adv. Energy Mater., 10, 1903993, 10.1002/aenm.201903993 Li, 2022, Negating Na‖Na3Zr2Si2PO12 interfacial resistance for dendrite-free and “Na-less” solid-state batteries, Chem. Sci., 13, 14132, 10.1039/D2SC05120F