Bẫy phấn hoa hàng năm tiết lộ sự phức tạp của sự kiểm soát khí hậu đối với năng suất phấn hoa ở châu Âu và Kavkaz

Vegetation History and Archaeobotany - Tập 19 - Trang 285-307 - 2010
W. O. van der Knaap1, Jacqueline F. N. van Leeuwen1, Helena Svitavská-Svobodová2, Irena A. Pidek3, Eliso Kvavadze4, Maia Chichinadze4, Thomas Giesecke5, Bogusław Michał Kaszewski3, Florencia Oberli1, Laimdota Kalniņa6, Heather S. Pardoe7, Willy Tinner1, Brigitta Ammann1
1Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
2Institute of Botany, Academy of Sciences of the Czech Republic, Castle, Czech Republic
3Institute of Earth Sciences, Maria Curie-Skłodowska University in Lublin, Lublin, Poland
4Institute of Paleobiology, National Museum of Georgia, Tbilisi, Georgia
5Albrecht-von-Haller-Institute for Plant Sciences, Department of Palynology and Climate Dynamics, University of Göttingen, Göttingen, Germany
6Faculty of Geography and Earth Sciences, University of Latvia, Riga, Latvia
7Department of Biodiversity and Systematic Biology, National Museum Wales, Cardiff, UK

Tóm tắt

Tốc độ tích lũy phấn hoa hàng năm (PAR; hạt/cm²/năm) đã được nghiên cứu bằng cách sử dụng các bẫy Tauber đã được điều chỉnh đặt tại mười vùng, ở Ba Lan (Roztocze), Cộng hòa Séc (hai vùng ở Krkonoše, hai vùng ở Šumava), Thụy Sĩ (4 vùng ở Alps), và Georgia (Lagodekhi). Dữ liệu thời gian kéo dài từ 10–16 năm, tất cả đều kết thúc vào năm 2007. Chúng tôi tính toán mối tương quan giữa dữ liệu phấn hoa và khí hậu. Dữ liệu phấn hoa là PAR được tổng hợp theo từng vùng (4–7 bẫy được lựa chọn mỗi vùng) cho mỗi loại phấn hoa (9–14 mỗi vùng) sử dụng trung vị log biến đổi và đã loại bỏ xu hướng. Dữ liệu khí hậu là nhiệt độ và lượng mưa hàng tháng được đo tại các trạm gần đó, và trung bình của chúng qua tất cả các khoảng thời gian 2 đến 6 tháng có thể xảy ra trong khoảng thời gian 20 tháng kết thúc vào tháng Tám, ngay trước khi thu thập phấn hoa hàng năm. Phần lớn các mối quan hệ giữa PAR và khí hậu đã được phát hiện có sự khác biệt cả giữa các loại phấn hoa và giữa các vùng, điều này có thể do sự khác biệt giữa các vùng nghiên cứu trong môi trường sống của các quần thể thực vật. Kết quả chung mà nhiều vùng chia sẻ có thể được tóm tắt như sau. Nhiệt độ ấm vào mùa hè được phát hiện làm tăng PAR của Picea, Pinus không-cembra, Larix và Fagus vào năm tiếp theo. Ngược lại, mùa hè mát mẻ làm gia tăng PAR của Abies, Alnus viridis và Gramineae trong năm tiếp theo, trong khi mùa hè ẩm ướt thúc đẩy PAR của Quercus và Gramineae. Độ ẩm và ấm áp nói chung được phát hiện làm tăng PAR của Salix. Lượng mưa được cho là quan trọng hơn đối với PAR của loại Alnus glutinosa so với nhiệt độ. Thời tiết không có tác động đến PAR của Gramineae, và có thể cả của Cyperaceae trong cùng năm. Cần thận trọng khi suy luận kết quả của chúng tôi sang PAR trong các chuỗi phấn hoa, bởi vì có những sai số lớn liên quan đến PAR từ trầm tích, do ảnh hưởng của taphonomy và quá trình lắng đọng cũng như độ không chắc chắn cao trong việc xác định niên đại. Hơn nữa, trong các chuỗi phấn hoa có độ phân giải từ hàng thập kỷ đến thế kỷ thay vì gần hàng năm, các hiệu ứng tương tác cây trồng có thể dễ dàng vượt qua tín hiệu thời tiết.

Từ khóa

#phấn hoa #độ tích lũy phấn hoa #khí hậu #môi trường thực vật #Ba Lan #Cộng hòa Séc #Thụy Sĩ #Georgia #nghiên cứu sinh thái

Tài liệu tham khảo

Agrometeorological Rapporteur (1996–2008) Agrometeorologický zpravodaj. Český hydrometeorologický ústav, Úsek meteorologie a klimatologie (Czech Hydrometeorological Institute, Department of Meteorology and Climatology), Praha. Volumes 16–28 (in Czech) Autio J, Hicks S (2004) Annual variations in meteorological conditions and pollen deposition on the fell Aakenustunturi in northern Finland. Potential for using fossil pollen as a climate proxy. Grana 43:31–47 Barnekow L, Loader NJ, Hicks S, Froyd CA, Goslar T (2007) Strong correlation between summer temperature and pollen accumulation rates for Pinus sylvestris, Picea abies and Betula spp. in a high-resolution record from northern Sweden. J Quat Sci 22:653–658 Bennett KD, Hicks S (2005) Numerical analysis of surface and fossil pollen spectra from northern Fennoscandia. J Biogeogr 32:407–423 Birks HH, Bjune AE (2010) Can we detect a west-Norwegian tree-line from modern samples of plant remains and pollen? Results from the DOORMAT project. Veget Hist Archaeobot 19 (this volume) Corden J, Millington W, Bailey J, Brookes M, Caulton E, Emberlin J, Mullins J, Simpson C, Wood A (2000) UK regional variations in Betula pollen (1993–1997). Aerobiologia 16:227–232 Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht, 5th edn. Ulmer, Stuttgart Emberlin J, Savage M, Woodman R (1993) Annual variation in Betula pollen seasons in London 1961–1990. Grana 32:359–363 Filipova-Marinova MV, Kvavadze EV, Connor SE, Sjögren P (2010) Estimating absolute pollen productivity for some European Tertiary-relict taxa. Veget Hist Archaeobot 19 (this volume) Gerasimidis A, Panajiotidis S, Hicks S, Athanasiadis N (2006) An eight-year record of pollen deposition in the Pieria mountains (N. Greece) and its significance for interpreting fossil pollen assemblages. Rev Palaeobot Palynol 141:231–243 Giesecke T, Bjune AE, Chiverrell RC, Seppä H, Ojala AEK, Birks HJB (2008) Exploring Holocene continentality changes in Fennoscandia using present and past tree distributions. Quat Sci Rev 27:1,296–1308 Giesecke T, Fontana SL, van der Knaap WO, Pardoe HS, Pidek IA (2010) From early pollen trapping experiments to the Pollen Monitoring Programme. Veget Hist Archaeobot 19 (this volume) Goslar T, van der Knaap WO, Kamenik C, van Leeuwen JFN (2009) Free-shape 14C age-depth modelling of an intensively dated modern peat profile. J Quat Sci 24:481–499 Hammer Ø, Harper DAT, Ryan PD (2009) PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9 pp. http://folk.uio.no/ohammer/past Heikkilä M, Seppä H (2003) A 11,000 yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quat Sci Rev 22:541–554 Heiri C, Bugmann H, Tinner W, Heiri O, Lischke H (2006) A model-based reconstruction of Holocene treeline dynamics in the Central Swiss Alps. J Ecol 94:206–216 Hicks S (1974) A method of using modern pollen rain values to provide a time-scale for pollen diagrams from peat deposits. Mem Soc Fauna Flora Fennica 49:21–33 Hicks S (1977) Modern pollen rain in Finnish Lapland investigated by analysis of surface moss samples. New Phytol 78:715–734 Hicks S (1985) Modern pollen deposition records from Kuusamo, Finland. I. Seasonal and annual variation. Grana 24:167–184 Hicks S (2001) The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol 117:1–29 Hicks S (2006) When no pollen does not mean no trees. Veget Hist Archaeobot 15:253–261 Hicks S, Hyvärinen V-P (1986) Sampling modern pollen deposition by means of “Tauber traps”: some considerations. Pollen Spores 28:219–242 Hicks S, Sunnari A (2005) Adding precision to the spatial factor of vegetation reconstructed from pollen assemblages. Plant Biosystems 139:127–134 Hicks S, Helander M, Heino S (1994) Birch pollen production, transport and deposition for the period 1984–1993 at Kevo, northernmost Finland. Aerobiologia 10:183–191 Hicks S, Ammann B, Latałowa M, Pardoe H, Tinsley H (1996) European Pollen Monitoring Programme: Project Description and Guidelines. Oulu Univ Press, Oulu Hicks S, Tinsley H, Pardoe H, Cundill P (1999) European Pollen Monitoring Programme: Supplement to the Guidelines. Oulu Univ Press, Oulu Hicks S, Tinsley H, Huusko A, Jensen C, Hattestrand M, Gerasimides A, Kvavadze E (2001) Some comments on spatial variation in arboreal pollen deposition: first records from the Pollen Monitoring Programme (PMP). Rev Palaeobot Palynol 117:183–194 Hicks S, Goslar T, van der Borg K (2004) A near annual record of recent tree-line dynamics from northern Finland. Acta Palaeobot 44:299–316 Huusko A, Hicks S (2009) Conifer pollen abundance provides a proxy for summer temperature: evidence from the latitudinal forest limit in Finland. J Quat Sci 24:522–528 Jensen C, Vorren K-D, Mørkved B (2007) Annual pollen accumulation rate (PAR) at the boreal and alpine forest-line of north-western Norway, with special emphasis on Pinus sylvestris and Betula pubescens. Rev Palaeobot Palynol 144:337–361 Kamenik C, van der Knaap WO, van Leeuwen JFN, Goslar T (2009) Pollen/climate calibration based on a near-annual peat sequence from the Swiss Alps. J Quat Sci 24:529–546 Körner C (1999) Alpine plant life. Springer, Berlin Kvavadze E (2001) Annual modern pollen deposition in the foothills of the Lagodekhi Reservation (Caucasus, East Georgia), related to vegetation and climate. Acta Palaeobot 41:355–364 Latałowa M, Miętus M, Uruska A (2002) Seasonal variation in the atmospheric Betula pollen count in Gdańsk (southern Baltic coast) in relation to meteorological parameters. Aerobiologia 18:33–43 Levetin E, Rogers C, Hall S (2000) Comparison of pollen sampling with a Burkard Spore Trap and Tauber Trap in a warm temperate climate. Grana 39:294–302 Lotter AF (1999) Late-glacial and Holocene vegetation history and dynamics as evidenced by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee (Central Switzerland). Veget Hist Archaeobot 8:165–184 Menzel A (2003) Plant phenological anomalies in Germany and their relation to air temperature and NAO. Clim Change 57:243–263 Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell, London Nielsen AB, Møller PF, Giesecke T, Stavngaard B, Fontana SL, Bradshaw RHW (2010) Inter-annual flowering variability monitored by pollen traps below the canopy in Draved forest, Denmark. Veget Hist Archaeobot 19 (this volume) Oikonen MK, Hicks S, Heino S, Rantio-Lehtimäki A (2005) The start of the birch pollen season in Finnish Lapland: separating non-local from local birch pollen and the implication for allergy sufferers. Grana 44:81–186 Pardoe HS, Giesecke T, van der Knaap WO, Svitavská-Svobodová H, Kvavadze EV, Panajiotidis S, Gerasimidis A, Pidek IA, Zimny M, Święta-Musznicka J, Latałowa M, Noryskiewicz AM, Bozilova E, Tonkov S, Filipova-Marinova MV, van Leeuwen JFN, Kalniņa L (2010) Comparing pollen spectra from modified Tauber traps and moss samples: examples from a selection of woodlands across Europe. Veget Hist Archaeobot 19 (this volume) Pidek IA, Weryszko-Chmielewska E, Piotrowska K (2006) Comparison of pollen concentration of selected tree taxa in Lublin and in the Roztocze region (SE Poland)—the results of three monitoring methods. Acta Agrobot 59:355–364 Pidek IA, Svitavská-Svobodová H, van der Knaap WO, Noryśkiewicz AM, Filbrandt-Czaja A, Noryśkiewicz B, Latałowa M, Zimny M, Święta-Musznicka J, Bozilova E, Tonkov S, Filipova-Marinova M, Poska A, Giesecke T, Gikov A (2010) Variation in annual pollen accumulation rates of Fagus along a N–S transect in Europe based on pollen traps. Veget Hist Archaeobot 19 (this volume). doi:10.1007/s00334-010-0248-0 Ranta H, Satri P (2007) Synchronized inter-annual fluctuation of flowering intensity affects the exposure to allergenic tree pollen in North Europe. Grana 46:274–284 Ranta H, Oksanen A, Hokkanen T, Bondestam K, Heino S (2005) Masting by Betula-species; applying the resource bucget model to north European data sets. Int J Biometeorol 49:146–151 Ranta H, Sokol C, Hicks S (2007) Comparison of time-series measurements between a volumetric air sampler and a Tauber pollen trap in the northern tree-line area of Fennoscandia. In: Kalnina L, Luksevic E (eds) Abstracts. Pollen Monitoring Programme 6th International Meeting, 3–9 June 2007, Jurmala, Latvia, pp 73–74 Ranta H, Sokol C, Hicks S, Heino S, Kubin E (2008a) How do airborne and deposition pollen samplers reflect the atmospheric dispersal of different pollen types? An example from northern Finland. Grana 47:285–296 Ranta H, Hokkanen T, Linkosalo T, Laukkanen L, Bondestam K (2008b) Male flowering of birch; Spatial synchronization, year to year variation and relation of catkin numbers and airborne pollen counts. For Ecol Manag 255:643–650 Räsänen S, Hicks S, Odgaard BV (2004) Pollen deposition in mosses and in a modified ‘Tauber trap’ from Hailuoto, Finland: what exactly do the mosses record? Rev Palaeobot Palynol 129:103–116 Rodriguez de la Cruz D, Sanchez Reyes E, Sanchez Sanchez J (2008) Aerobiological study of Fagaceae pollen in the middle-west of Spain. Aerobiologia 24:67–76 Seppä H, Birks HJB (2001) July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. Holocene 11:527–539 Seppä H, Birks HJB (2002) Holocene climate reconstruction from the Fennoscandian tree-line area based on pollen data from Toskaljavri. Quat Res 57:191–199 Seppä H, Hicks S (2006) Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions. Quat Sci Rev 25:1,501–1516 Sjögren P, van der Knaap WO, Huusko A, van Leeuwen JFN (2008) Pollen productivity, dispersal, and correction factors for major tree taxa in the Swiss Alps based on pollen-trap results. Rev Palaeobot Palynol 152:200–210 Sjögren P, Connor SE, van der Knaap WO (2010) The development of composite pollen-dispersal functions for estimating absolute pollen productivity in the Swiss Alps. Veget Hist Archaeobot 19 (this volume) Spieksma FTM, Emberlin JC, Hjelmroos M, Jäger S, Leuschner RM (1995) Atmospheric birch (Betula) pollen in Europe: trends and fluctuations in annual quantities and the starting dates of the season. Grana 34:51–61 Spieksma FTM, Corden JM, Detandt M, Millington WM, Nikkels H, Nolard N, Schoenmakers CHH, Wachter R, de Weger LA, Willems R, Emberlin J (2003) Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia 19:171–184 Studer S, Appenzeller C, Defila C (2005) Inter-annual variability and decadal trends in Alpine Spring phenology: a multivariate analysis approach. Clim Change 73:395–414 Svobodová H (2004) Vývoj vegetace na Upském rašeliništi v holocénu. Development of the Vegetation on Upské rašeliniště Mire in the Holocene. Opera Corcontica 41:124–130 Svobodová H, Reille M, Goeury C (2001) Past vegetation dynamics of Vltavský luh, upper Vltava valley in the Šumava mountains, Czech Republic. Veget Hist Archaeobot 10:185–199 Svobodová H, Soukupová L, Reille M (2002) Diversified development of mountain mires, Bohemian Forest, Central Europe, in the last 13,000 years. Quat Int 91:123–135 Tinner W, Ammann B (2005) Long-term responses of mountain ecosystems to environmental changes: Resilience, adjustment, and vulnerability. In: Huber UM, Bugmann H, Reasoner M (eds) Global change and mountain research—state of knowledge overview. Advances in global change research. Springer, Dordrecht, pp 133–144 Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat Sci Rev 25:526–549 Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87:273–289 Tinsley H (2001) Modern pollen deposition in traps on a transect across an anthropogenic tree-line on Exmoor, southwest England: a note summarising the first three years of data. Rev Palaeobot Palynol 117:153–158 Tonkov S, Hicks S, Bozilova E, Atanassova J (2001) Pollen monitoring in the central Rila Mountains, Southwestern Bulgaria: comparisons between pollen traps and surface samples for the period 1993–1999. Rev Palaeobot Palynol 117:167–182 Tranquillini W (1979) Physiological ecology of the Alpine timberline. Springer, Berlin Tyler G (2001) Relationships between climate and flowering of eight herbs in a Swedish deciduous forest. Ann Bot 87:623–630 Van der Knaap WO, Ammann B (1997) Depth–age relationships of 25 well-dated Swiss Holocene pollen sequences archived in the Alpine Palynological Data-Base. Rev Paléobiol 16:433–480 Van der Knaap WO, van Leeuwen JFN (2003) Climate/pollen relationships AD 1901–1996 in two small mires near the forest limit in the northern and central Swiss Alps. Holocene 13:809–829 Van der Knaap WO, van Leeuwen JFN, Fankhauser A, Ammann B (2000) Palyno-stratigraphy of the last centuries in Switzerland based on 23 lake and mire deposits: chronostratigraphic pollen markers, regional patterns, and local histories. Rev Palaeobot Palynol 108:85–143 Van der Knaap WO, van Leeuwen JFN, Ammann B (2001a) Seven years of annual pollen influx at the forest limit in the Swiss Alps studied by pollen traps: relations to vegetation and climate. Rev Palaeobot Palynol 117:31–52 Van der Knaap WO, van Leeuwen JFN, Fankhauser A, Ammann B (2001b) Erratum to “Palyno-stratigraphy of the last centuries in Switzerland based on 23 lake and mire deposits: chronostratigraphic pollen markers, regional patterns, and local histories” [Rev Palaeobot Palynol 108 (2000) 85–142]. Rev Palaeobot Palynol 114:269–271 Welten M (1982) Vegetationsgeschichtliche Untersuchungen in den westlichen Schweizer Alpen: Bern–Wallis. Denkschr Schweiz Naturforsch Ges 95 Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003) Holocene vegetation development in the catchment of Sägistalsee (1935 m asl), a small lake in the Swiss Alps. J Paleolimnol 30:261–272