Anisotropy and Clausius-Clapeyron relation for forward and reverse stress-induced martensitic transformations in polycrystalline NiTi thin walled tubes

Mechanics of Materials - Tập 146 - Trang 103392 - 2020
Estephanie Nobre Dantas Grassi1, Grégory Chagnon1, Henrique Martinni Ramos de Oliveira1, Denis Favier1
1Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble F-38000, France

Tài liệu tham khảo

Alonso, 2015 Alonso, 2019, Characterizing transformation phenomena and elastic moduli of austenite and oriented martensite of superelastic thin NiTi wire through isothermal dynamic mechanical analysis, J. Mater. Eng. Perform., 2 Barney, 2011, Impact of thermomechanical texture on the superelastic response of Nitinol implants, Journal of the mechanical behavior of biomedical materials, 4, 1431, 10.1016/j.jmbbm.2011.05.013 Bechle, 2016, Evolution of localization in pseudoelastic NiTi tubes under biaxial stress states, International Journal of Plasticity, 82, 1, 10.1016/j.ijplas.2016.01.017 Bonsignore, 2004, A decade of evolution in stent design Bucsek, 2016, Myths and truths of Nitinol mechanics: Elasticity and tension–compression asymmetry, Shape Memoryand Superelasticity, 2, 264, 10.1007/s40830-016-0074-z Damanpack, 2017, A finite-strain constitutive model for anisotropic shape memory alloys, Mechanics of Materials, 10.1016/j.mechmat.2017.05.012 Delobelle, 2012 Duerig, 2017, The measurement and interpretation of transformation temperatures in Nitinol, 204 Elibol, 2015, Strain rate effects on the localization of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression-shear, Materials Science and Engineering A, 643, 194, 10.1016/j.msea.2015.07.039 Favier, 2000, Restoration by rapid overheating of thermally stabilised martensite of NiTi shape memory alloys, Journal of Alloys and Compounds, 297, 114, 10.1016/S0925-8388(99)00576-9 Favier, 2006, Influence of thermomechanical processing on the superelastic properties of a Ni-rich Nitinol shape memory alloy, Materials Science and Engineering A, 429, 130, 10.1016/j.msea.2006.05.018 Favier, 2007, Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at.% Ni thin tube under tension. investigation via temperature and strain fields measurements, Acta Materialia, 55, 5310, 10.1016/j.actamat.2007.05.027 Favier, 1998, Stress-induced transformation of a NiTi alloy in isothermal shear, tension and compression, Acta Mater., 46, 5579, 10.1016/S1359-6454(98)00167-0 Frenzel, 2015, On the effect of alloy composition on martensite start temperatures and latent heats in ni-ti-based shape memory alloys, Acta Mater., 90, 213, 10.1016/j.actamat.2015.02.029 Gall, 1999, Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi, Acta Materialia, 47, 1203, 10.1016/S1359-6454(98)00432-7 Gall, 2005, Tensile deformation of NiTi wires, Journal of Biomedical Materials Research - Part A, 75, 810, 10.1002/jbm.a.30464 Hamilton, 2004, Stress dependence of the hysteresis in single crystal NiTi alloys, Acta Mater., 52, 3383, 10.1016/j.actamat.2004.03.038 Jani, 2014, A review of shape memory alloy research, applications and opportunities, Materials & Design, 56, 1078, 10.1016/j.matdes.2013.11.084 Khalil-Allafi, 2009, The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys, Journal of Alloys and Compounds, 487, 363, 10.1016/j.jallcom.2009.07.135 Lagoudas, 2008 Laplanche, 2017, Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys, Acta Materialia, 127, 143, 10.1016/j.actamat.2017.01.023 Linardon, 2014, A conical mandrel tube drawing test designed to assess failure criteria, Journal of Materials Processing Tech., 214, 347, 10.1016/j.jmatprotec.2013.09.021 Liu, 2009, Thermodynamics of the shape memory effect in NiTi alloys Liu, 2015, The superelastic anisotropy in a NiTi shape memory alloy thin sheet, Acta Materialia, 95, 411, 10.1016/j.actamat.2015.03.022 Liu, 2008, Effect of pseudoelastic cycling on the Clausius–Clapeyron relation for stress-induced martensitic transformation in NiTi, J. Alloys Compd., 449, 82, 10.1016/j.jallcom.2006.02.080 Liu, 1998, Apparent modulus of elasticity of near-equiatomic NiTi, Journal of Alloys and Compounds, 270, 154, 10.1016/S0925-8388(98)00500-3 Liu, 2007, Strain dependence of the Clausius–Clapeyron relation for thermoelastic martensitic transformations in NiTi, Smart Materials and Structures, 16, 10.1088/0964-1726/16/1/S03 McCormick, 1994, Thermodynamic analysis of the martensitic transformation in NiTi-II. Effect of transformation cycling, Acta Metallurgica Et Materialia, 42, 2407, 10.1016/0956-7151(94)90319-0 Meng, 2010, Transformation intervals and elastic strain energies of b2-b19 martensitic transformation of NiTi, Intermetallics, 18, 2431, 10.1016/j.intermet.2010.08.038 Miyazaki, 1984, The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals, Scripta Metallurgica, 18, 883, 10.1016/0036-9748(84)90254-0 Ortín, 1988, Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations, Acta Metallurgica, 36, 1873, 10.1016/0001-6160(88)90291-X Ortín, 1989, Thermodynamics of thermoelastic martensitic transformations, Acta Metall., 37, 1433, 10.1016/0001-6160(89)90175-2 Ortín, 1991, Thermodynamics and hysteresis behaviour of thermoelastic martensitic transformations, Le Journal de Physique IV, 01, 13 Otsuka, 1986, Pseudoelasticity and shape memory effects in alloys, International Metals Reviews, 31, 93, 10.1179/imtr.1986.31.1.93 Palengat, 2013, Cold drawing of 316l stainless steel thin-walled tubes : Experiments and finite element analysis, International Journal of Mechanical Sciences, 70, 69, 10.1016/j.ijmecsci.2013.02.003 Pelton, 2015, In situ neutron diffraction studies of increasing tension strains of superelastic Nitinol, Shape Memoryand Superelasticity, 1, 375, 10.1007/s40830-015-0031-2 Robertson, 2006, Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol, Journal of Materials Science, 41, 621, 10.1007/s10853-006-6478-y Robertson, 2005, Crystallographic texture for tube and plate of the superelastic/shape- memory alloy Nitinol used for endovascular stents, Journal of Biomedical Materials Research - Part A, 72, 190, 10.1002/jbm.a.30214 Saburi, 1998, Ti-Ni Shape Memory Alloys Stebner, 2015, In situ neutron diffraction studies of large monotonic deformations of superelastic nitinol, Shape Memoryand Superelasticity, 1, 252, 10.1007/s40830-015-0015-2 Sun, 2014, Effects of grain size on phase transition behavior of nanocrystalline shape memory alloys, Science China Technological Sciences, 57, 671, 10.1007/s11431-014-5505-5 Šittner, 2006, R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals, Mechanics of Materials, 38, 475, 10.1016/j.mechmat.2005.05.025 Šittner, 2005, On the origin of Lüders-like deformation of NiTi shape memory alloys, Journal of the Mechanics and Physics of Solids, 53, 1719, 10.1016/j.jmps.2005.03.005 Wagner, 2008, Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles, Acta Mater., 56, 6232, 10.1016/j.actamat.2008.08.043 Wollants, 1993, Thermally and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics, Prog. Mater. Sci., 37, 227, 10.1016/0079-6425(93)90005-6 Yu, 2018, A micromechanical model for the grain size dependent super-elasticity degeneration of NiTi shape memory alloys, Mechanics of Materials, 125, 35, 10.1016/j.mechmat.2018.07.008 Zheng, 2008, Effect of ageing treatment on the transformation behaviour of Ti–50.9at.% Ni alloy, Acta Materialia, 56, 736, 10.1016/j.actamat.2007.10.020 Zhou, 2012, A macroscopic constitutive model of shape memory alloy considering plasticity, Mechanics of Materials, 48, 71, 10.1016/j.mechmat.2012.02.001