Anisotropic swelling of elastomers filled with aligned 2D materials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kraus, 1963, Swelling of filler-reinforced vulcanizates, J. Appl. Polym. Sci., 7, 861, 10.1002/app.1963.070070306
Boonstra, 1979, Role of particulate fillers in elastomer reinforcement: a review, Polymer, 20, 691, 10.1016/0032-3861(79)90243-X
Burnside, 1995, Synthesis and properties of new poly (dimethylsiloxane) nanocomposites, Chem. Mater., 7, 1597, 10.1021/cm00057a001
Huang, 2001, Poly (etherimide)/montmorillonite nanocomposites prepared by melt intercalation: morphology, solvent resistance properties and thermal properties, Polymer, 42, 873, 10.1016/S0032-3861(00)00411-0
Coran, 1971, Unidirectional fiber–polymer composites: Swelling and modulus anisotropy, J. Appl. Polym. Sci., 15, 2471, 10.1002/app.1971.070151014
Nardinocchi, 2015, Anisotropic swelling of thin gel sheets, Soft Matter, 11, 1492, 10.1039/C4SM02485K
Haque, 2010, Unidirectional alignment of lamellar bilayer in hydrogel: one-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color, Adv. Mater., 22, 5110, 10.1002/adma.201002509
Qin, 2019, Anisotropic and self-healing hydrogels with multi-responsive actuating capability, Nat. Commun., 10, 2202, 10.1038/s41467-019-10243-8
Wang, 1999, Swelling behavior of polymer gels with built-in anisotropy near the volume-phase transition point, Macromolecules, 32, 1822, 10.1021/ma9811627
Treloar, 1950, The swelling of cross-linked amorphous polymers under strain, Trans. Faraday Soc., 46, 783, 10.1039/tf9504600783
Flory, 1943, Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity, J. Chem. Phys., 11, 512, 10.1063/1.1723791
Flory, 1943, Statistical mechanics of cross-linked polymer networks II. Swelling, J. Chem. Phys., 11, 521, 10.1063/1.1723792
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Young, 2012, The mechanics of graphene nanocomposites: a review, Compos. Sci. Technol., 72, 1459, 10.1016/j.compscitech.2012.05.005
Papageorgiou, 2017, Mechanical properties of graphene and graphene-based nanocomposites, Prog. Mater. Sci., 90, 75, 10.1016/j.pmatsci.2017.07.004
Kiani, 2019, NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates, J. Therm. Stresses, 43, 90, 10.1080/01495739.2019.1673687
Arefi, 2018, Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets, Aerosp. Sci. Technol., 81, 108, 10.1016/j.ast.2018.07.036
Thai, 2019, Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation, Compos. Struct., 220, 749, 10.1016/j.compstruct.2019.03.100
Arefi, 2019, Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets, Composites B, 166, 1, 10.1016/j.compositesb.2018.11.092
Li, 2019, Analytical consideration and numerical verification of the confined functionally graded porous ring with graphene platelet reinforcement, Int. J. Mech. Sci., 161, 10.1016/j.ijmecsci.2019.105079
Lin, 2018, Vibration, buckling and aeroelastic analyses of functionally graded multilayer graphene-nanoplatelets-reinforced composite plates embedded in piezoelectric layers International, J. Appl. Mech., 10, 1850023, 10.1142/S1758825118500230
Arefi, 2019, Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT, Thin-Walled Struct., 142, 444, 10.1016/j.tws.2019.04.054
Mohammad-Rezaei, 2019, Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation, J. Sandw. Struct. Mater., 0, 1, 10.1177/1099636219839302
Li, 2017, Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement, J. Mater. Sci., 52, 9558, 10.1007/s10853-017-1144-0
Papageorgiou, 2015, Graphene/elastomer nanocomposites, Carbon, 95, 460, 10.1016/j.carbon.2015.08.055
Liu, 2018, Micromechanics of reinforcement of a graphene-based thermoplastic elastomer nanocomposite, Composites A, 110, 84, 10.1016/j.compositesa.2018.04.014
Bansod, 2019, Development and characterization of graphitic carbon nitride as nonblack filler in natural rubber composites, J. Appl. Polym. Sci., 136, 48136, 10.1002/app.48136
Tamore, 2019, Effect of functionalized multi-walled carbon nanotubes on physicomechanical properties of silicone rubber nanocomposites, J. Compos. Mater., 53, 3157, 10.1177/0021998319827080
Liu, 2019, Modelling mechanical percolation in graphene-reinforced elastomer nanocomposites, Composites B, 178, 10.1016/j.compositesb.2019.107506
Li, 2015, Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy, Carbon, 88, 215, 10.1016/j.carbon.2015.02.072
Li, 2016, Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites, Compos. Sci. Technol., 123, 125, 10.1016/j.compscitech.2015.12.005
Young, 2018, The mechanics of reinforcement of polymers by graphene nanoplatelets, Compos. Sci. Technol., 154, 110, 10.1016/j.compscitech.2017.11.007
Treloar, 1975
Young, 2011
Saito, 1987, Chain orientation and intrinsic anisotropy in birefringence-free polymer blends, J. Polym. Sci. B, 25, 1629, 10.1002/polb.1987.090250806
Mitchell, 1984, A wide-angle x-ray study of the development of molecular orientation in crosslinked natural rubber, Polymer, 25, 1562, 10.1016/0032-3861(84)90148-4