Gỗ Nano: Cách nhiệt siêu nhiệt, trọng lượng nhẹ và bền vững với các sợi nano cellulose tự nhiên sắp xếp đồng hướng

Science advances - Tập 4 Số 3 - 2018
Tian Li1, Jianwei Song1, Xinpeng Zhao2, Zhi Yang3, Glenn Pastel1, Shaomao Xu1, Chao Jia1, Jiaqi Dai1, Chaoji Chen1, Amy Gong1, Feng Jiang1, Yonggang Yao1, Tianzhu Fan2, Bao Yang3, Lars Wågberg4,5, Ronggui Yang2, Liangbing Hu1
1Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742 USA
2Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
3Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742 USA
4Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
5Wallenberg Wood Science Centre, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

Tóm tắt

Các nhà nghiên cứu đã chuyển đổi gỗ tự nhiên thành một vật liệu cấu trúc cách nhiệt siêu nhiệt với các sợi nano cellulose được sắp xếp đồng hướng.

Từ khóa

#gỗ nano #cách nhiệt siêu nhiệt #sợi nano cellulose #trọng lượng nhẹ #gỗ tự nhiên #vật liệu cấu trúc

Tài liệu tham khảo

U.S. Department of Energy Buildings; https://energy.gov/eere/buildings/building-technologies-office.

U.S. Department of Energy Guiding Principles for Sustainable Federal Buildings; https://energy.gov/eere/femp/guiding-principles-sustainable-federal-buildings.

B. P. Jelle, Traditional, state-of-the-art and future thermal building insulation materials and solutions – Properties, requirements and possibilities. Energy Build. 43, 2549–2563 (2011).

M. S. Al-Homoud, Performance characteristics and practical applications of common building thermal insulation materials. Build. Environ. 40, 353–366 (2005).

H. S. Kim, T. Wang, W. Liu, Z. Ren, Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators. Adv. Funct. Mater. 26, 3678–3686 (2016).

10.1038/nnano.2014.248

10.1038/nnano.2013.129

Y. Hu, L. Zeng, A. J. Minnich, M. S. Dresselhaus, G. Chen, Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701–706 (2015).

A. M. Papadopoulos, State of the art in thermal insulation materials and aims for future developments. Energy Build. 37, 77–86 (2005).

D. Bozsaky, The historical development of thermal insulation materials. Period. Polytech. Archit. 41, 49–56 (2010).

J. D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, A. Zurutuza, A. I. Cocemasov, D. L. Nika, A. A. Balandin, Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 25, 4664–4672 (2015).

Y. Lan Z. Ren Thermoelectric nanocomposites for thermal energy conversion in Nanomaterials for Sustainable Energy Q. Li Ed. (Springer 2016).

S. Lee, K. Esfarjani, T. Luo, J. Zhou, Z. Tian, G. Chen, Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014).

T. Borca-Tasciuc, S. Vafaei, D.-A. Borca-Tasciuc, B. Q. Wei, R. Vajtai, P. M. Ajayan, Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays. J. Appl. Phys. 98, 054309 (2005).

L. Guo, J. Wang, Z. Lin, S. Gacek, X. Wang, Anisotropic thermal transport in highly ordered TiO2 nanotube arrays. J. Appl. Phys. 106, 123526 (2009).

C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, G. J. Snyder, R. Yang, K. Koumoto, Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).

J. Liu, B. Yoon, E. Kuhlmann, M. Tian, J. Zhu, S. M. George, Y.-C. Lee, R. Yang, Ultralow thermal conductivity of atomic/molecular layer-deposited hybrid organic–inorganic zincone thin films. Nano Lett. 13, 5594–5599 (2013).

10.1126/science.1136494

M. D. Losego, I. P. Blitz, R. A. Vaia, D. G. Cahill, P. V. Braun, Ultralow thermal conductivity in organoclay nanolaminates synthesized via simple self-assembly. Nano Lett. 13, 2215–2219 (2013).

E. S. Toberer, L. L. Baranowski, C. Dames, Advances in thermal conductivity. Annu. Rev. Mater. Res. 42, 179–209 (2012).

S. Volz Thermal Nanosystems and Nanomaterials (Springer 2009).

C. H. Li G. P. Peterson Dual role of nanoparticles in the thermal conductivity enhancement of nanoparticle suspensions in ASME 2005 International Mechanical Engineering Congress and Exposition (IMECE2005) Orlando FL 5 to 11 November 2005.

10.1038/ncomms8170

10.1021/am500359f

J. Majoinen, J. Hassinen, J. S. Haataja, H. T. Rekola, E. Kontturi, M. A. Kostiainen, R. H. A. Ras, P. Törmä, O. Ikkala, Chiral plasmonics using twisting along cellulose nanocrystals as a template for gold nanoparticles. Adv. Mater. 28, 5262–5267 (2016).

L. R. Arcot, K. M. A. Uddin, X. Chen, X. Wenchao, K. Xianming, L. S. Johansson, R. H. A. Ras, O. J. Rojas, Paper-based plasmon-enhanced protein sensing by controlled nucleation of silver nanoparticles on cellulose. Cellulose 22, 4027–4034 (2015).

J. Y. Zhu, R. Sabo, X. Luo, Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem. 13, 1339–1344 (2011).

10.1021/cr900339w

J. Simonsen, Utilizing straw as a filler in thermoplastic building materials. Constr. Build. Mater. 10, 435–440 (1996).

L. Hu, G. Zheng, J. Yao, N. Liu, B. Weil, M. Eskilsson, E. Karabulut, Z. Ruan, S. Fan, J. T. Bloking, M. D. McGehee, L. Wågberg, Y. Cui, Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 6, 513–518 (2013).

Z.-Y. Wu, C. Li, H.-W. Liang, J.-F. Chen, S.-H. Yu, Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. Int. Ed. Engl. 125, 2997–3001 (2013).

L.-F. Chen, Z.-H. Huang, H.-W. Liang, W.-T. Yao, Z.-Y. Yu, S.-H. Yu, Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose. Energy Environ. Sci. 6, 3331–3338 (2013).

10.1021/acs.chemrev.6b00225

K. M. O. Håkansson, A. B. Fall, F. Lundell, S. Yu, C. Krywka, S. V. Roth, G. Santoro, M. Kvick, L. P. Wittberg, L. Wågberg, L. D. Söderberg, Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018 (2014).

Y. Yao, J. Tao, J. Zou, B. Zhang, T. Li, J. Dai, M. Zhu, S. Wang, K. K. Fu, D. Henderson, E. Hitz, J. Peng, L. Hu, Light management in plastic–paper hybrid substrate towards high-performance optoelectronics. Energy Environ. Sci. 9, 2278–2285 (2016).

A. J. Svagan, M. A. S. A. Samir, L. A. Berglund, Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater. 20, 1263–1269 (2008).

Z. M. Ali, L. J. Gibson, The structure and mechanics of nanofibrillar cellulose foams. Soft Matter 9, 1580–1588 (2013).

Z. Fang, H. Zhu, W. Bao, C. Preston, Z. Liu, J. Dai, Y. Li, L. Hu, Highly transparent paper with tunable haze for green electronics. Energy Environ. Sci. 7, 3313–3319 (2014).

Y. Qing, R. Sabo, J. Y. Zhu, U. Agarwal, Z. Cai, Y. Wu, A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr. Polym. 97, 226–234 (2013).

V. Vaou, D. Panias, Thermal insulating foamy geopolymers from perlite. Miner. Eng. 23, 1146–1151 (2010).

I. Gnip, S. Vaitkus, V. Keršulis, S. Vėjelis, Predicting the deformability of mineral wool slabs under constant compressive stress. Constr. Build. Mater. 23, 1928–1934 (2009).

E. Sjostrom Wood Chemistry (Elsevier ed. 2 2013).

R. H. White, Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Sci. 19, 446–452 (1987).

R. M. Rowell Handbook of Wood Chemistry and Wood Composites (CRC Press ed. 2 2012).

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, L. Hu, Highly anisotropic, highly transparent wood composites. Adv. Mater. 28, 5181–5187 (2016).

10.1002/aenm.201601122

10.1126/science.1120937

A. J. Kerr, D. A. I. Goring, The ultrastructural arrangement of the wood cell wall. Cellul. Chem. Technol. 9, 563–573 (1975).

J. E. Stone, A. M. Scallan, Effect of component removal upon the porous structure of the cell wall of wood. J. Polym. Sci. Pol. Sym. 11, 13–25 (1965).

T. A. Tabet F. A. Aziz Cellulose microfibril angle in wood and its dynamic mechanical significance in Cellulose - Fundamental Aspects T. van de Ven L. Godbout Eds. (InTech 2013).

E.-l. Hult “CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on wood an pulp fibers ” thesis KTH Royal Institute of Technology Stockholm Sweden (2001).

R. M. Kellogg, F. F. Wangaard, Variation in the cell-wall density of wood. Wood Fiber Sci. 1, 180–204 (2007).

Thermal conductivity of common materials and gases www.engineeringtoolbox.com/thermal-conductivity-d_429.html.

Thermal insulation materials technical characteristics and selection criteria www.fao.org/docrep/006/y5013e/y5013e08.htm.

D. W. Green J. E. Winandy D. E. Kretschmann Mechanical properties of wood in Wood Handbook: Wood as an Engineering Material (U.S. Department of Agriculture Forest Service Forest Products Laboratory 1999).

Eco-Panels vs. Traditional SIPs www.eco-panels.com/about-epanels-vs-tradsips.html.

Ecology benchmarking extended with GLAPOR cellular glass (2015); https://belglas.com/2015/11/17/ecology-benchmarking-extended-with-glapor-cellular-glass/).

X. Huang, M. Roushan, T. J. Emge, W. Bi, S. Thiagarajan, J.-H. Cheng, R. Yang, J. Li, Flexible hybrid semiconductors with low thermal conductivity: The role of organic diamines. Angew. Chem. Int. Ed. Engl. 48, 7871–7874 (2009).

M. Wu, J. Rhee, T. J. Emge, H. Yao, J.-H. Cheng, S. Thiagarajan, M. Croft, R. Yang, J. Li, A low band gap iron sulfide hybrid semiconductor with unique 2D [Fe16S20]8− layer and reduced thermal conductivity. Chem. Commun. 46, 1649–1651 (2010).

Y.-C. Chen, H. Yao, S. Thiagarajan, M. Wu, T. J. Emge, R. Yang, S. Yu, J. Li, Layered hybrid selenoantimonates with reduced thermal conductivity. Z. Anorg. Allg. Chem. 638, 2604–2609 (2012).

T. Shuvra Basu, R. Yang, S. J. Thiagarajan, S. Ghosh, S. Gierlotka, M. Ray, Remarkable thermal conductivity reduction in metal-semiconductor nanocomposites. Appl. Phys. Lett. 103, 083115 (2013).

J. Feng, J. Feng, C. Zhang, Thermal conductivity of low density carbon aerogels. J. Porous Mater. 19, 551–556 (2012).

10.1007/s10765-009-0595-1

10.1073/pnas.1502870112

Properties of paper www.paperonweb.com/paperpro.htm.

M. G. Kaganer Thermal Insulation in Cryogenic Engineering (Israel Program for Scientific Translations 1969).

J. Eitelberger, K. Hofstetter, Prediction of transport properties of wood below the fiber saturation point – A multiscale homogenization approach and its experimental validation: Part I: Thermal conductivity. Compos. Sci. Technol. 71, 134–144 (2011).

B. M. Suleiman, J. Larfeldt, B. Leckner, M. Gustavsson, Thermal conductivity and diffusivity of wood. Wood Sci. Technol. 33, 465–473 (1999).

H. Yang, R. Yan, H. Chen, D. H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007).

S. A. Lavrykov, B. V. Ramarao, Thermal properties of copy paper sheets. Drying Technol. 30, 297–311 (2012).