Anisotropic fluid spheres admitting Karmarkar condition in f(G,T) gravity

Chinese Journal of Physics - Tập 67 - Trang 576-589 - 2020
G. Mustafa1, M. Farasat Shamir2, Mushtaq Ahmad3, Asifa Ashraf4
1Department of Mathematics, Shanghai University, Shanghai, 200444, Shanghai, People’s Republic of China
2National University of Computer and Emerging Sciences, Lahore Campus, Pakistan
3National University of Computer and Emerging Sciences, Chiniot-Faisalabad Campus, Pakistan
4School of Mathematical Sciences, Jiangsu Key Labortary for NSLSCS, Nanjing Normal University, Nanjing, 210023, People’s Republic of China

Tài liệu tham khảo

Oppenheimer, 1939, On massive neutron cores, Phys. Rev., 55, 374, 10.1103/PhysRev.55.374 Schwarzschild, 1916, Uber das gravitationsfeld eines massenpunktes nach der einsteinschen theorie, Sitz. Deut. Akad. Wiss. Berlin Kl. Math. Phys., 189 Schwarzschild, 1916, Uber das gravitationsfeld einer kugel aus inkompressibler flussigkeit, Sitz. Deut. Akad. Wiss. Berlin Kl. Math. Phys., 424 Bowers, 1974, Anisotropic spheres in general relativity, Astrophys. J., 188, 657, 10.1086/152760 Bekenstein, 1971, Hydrostatic equilibrium and gravitational collapse of relativistic charged fluid balls, Phys. Rev. D, 4, 2185, 10.1103/PhysRevD.4.2185 Santos, 1985, Non-adiabatic radiating collapse, Mon. Not. R. Astron. Soc, 216, 403, 10.1093/mnras/216.2.403 Vaidya, 1951, The gravitational field of a radiating star, Proc. Ind. Acad. Sci. A, 33, 264, 10.1007/BF03173260 Bonnor, 1989, Radiating spherical collapse, Phys. Rep., 181, 269, 10.1016/0370-1573(89)90069-0 Sharma, 2012, Non-adiabatic radiative collapse of a relativistic star under different initial conditions, Pramana J. Phys, 79, 501, 10.1007/s12043-012-0323-4 Govender, 2016, Gravitational collapse in spatially isotropic coordinates, Astrophys. Space Sci., 361, 33, 10.1007/s10509-015-2616-9 Bhar, 2015, Relativistic anisotropic stellar models with Tolman VII spacetime, Astrophys. Space Sci., 356, 309, 10.1007/s10509-014-2217-z Bhar, 2015, Vaidyatikekar type superdense star admitting conformal motion in presence of quintessence field, Eur. Phys. J. C, 75, 123, 10.1140/epjc/s10052-015-3340-x Singh, 2015, Charged anisotropic superdense stars with constant stability factor, Astrophys. Space Sci., 358, 44, 10.1007/s10509-015-2448-7 Andreasson, 2009, J. Phys.: Conference Series, 189, 012001 Mafa, 2014, Charged compact objects in the linear regime, Astrophys. Space Sci., 350, 733, 10.1007/s10509-014-1782-5 Ngubelanga, 2015, Compact stars with quadratic equation of state, Astrophys. Space Sci., 357, 74, 10.1007/s10509-015-2247-1 Govender, 2015, Anisotropic static spheres with linear equation of state in isotropic coordinates, Astrophys. Space Sci., 358, 16, 10.1007/s10509-015-2431-3 Bhar, 2015, The dark energy star and stability analysis, Eur. Phys. J., 75, 41, 10.1140/epjc/s10052-015-3270-7 Lobo, 2006, Stable dark energy stars, Class. Quantum Grav., 23, 1525, 10.1088/0264-9381/23/5/006 Rahaman, 2012, Strange stars in Kroribarua space-time, Eur. Phys. J., 72, 2071, 10.1140/epjc/s10052-012-2071-5 Rahaman, 2012, Singularity-free dark energy star, Gen. Relativ. Gravit., 44, 107, 10.1007/s10714-011-1262-y Bhar, 2015, Strange star admitting Chaplygin equation of state in Finch-Skea spacetime, Astrophys. Space Sci., 359, 41, 10.1007/s10509-015-2492-3 Chavanis, 2012, Bose-Einstein condensate general relativistic stars, Phys. Rev. D, 86, 064011, 10.1103/PhysRevD.86.064011 Harko, 2003, Gravitational collapse of a Hagedorn fluid in Vaidya geometry, Phys. Rev. D, 68, 064005, 10.1103/PhysRevD.68.064005 Dadhich, 2013, Gravitational collapse in pure Lovelock gravity in higher dimensions, Phys. Rev. D, 88, 084024, 10.1103/PhysRevD.88.084024 Joshi, 2011, Recent developments in gravitational collapse and spacetime singularities, Int. J. Mod. Phys. D, 20, 2641, 10.1142/S0218271811020792 Dadhich, 2012, The Lovelock gravity in the critical spacetime dimension, Phys. Lett. B, 711, 196, 10.1016/j.physletb.2012.03.084 Hansraj, 2015, Exact EGB models for spherical static perfect fluids, Eur. Phys. J. C, 75, 277, 10.1140/epjc/s10052-015-3504-8 Maharaj, 2015, Exact barotropic distributions in einstein-gauss-bonnet gravity, Phys. Rev. D, 91, 084049, 10.1103/PhysRevD.91.084049 Dadhich, 2016, Universality of isothermal fluid spheres in Lovelock gravity, Phys. Rev. D, 93, 10.1103/PhysRevD.93.044072 Banerjee, 2016, Braneworld gravastars admitting conformal motion, Eur. Phys. J., 76, 34, 10.1140/epjc/s10052-016-3887-1 Karmarkar, 1948, Gravitational metrics of spherical symmetry and class one, Proc. Indian Acad. Sci. A, 27, 56, 10.1007/BF03173443 Buchdahl, 1959, General relativistic fluid spheres, Phys. Rev., 116, 1027, 10.1103/PhysRev.116.1027 Baade, 1934, Remarks on super-novae and cosmic rays, Phys. Rev., 46, 76, 10.1103/PhysRev.46.76.2 Longair, 2011 Ghosh, 2007, vol. 7 Ruderman, 1972, Pulsars: structure and dynamics, Annu. Rev. Astron. Astrophys., 10, 427, 10.1146/annurev.aa.10.090172.002235 Maurya, 2013, Charged fluid to anisotropic fluid distribution in general relativity, Astrophys. Space Sci., 344, 243, 10.1007/s10509-012-1302-4 Maurya, 2012, A family of anisotropic super-dense star models using a space-time describing charged perfect fluid distributions, Phys. Scr., 86, 025009, 10.1088/0031-8949/86/02/025009 Maharaj, 2014, Some simple models for quark stars, Eur. Phys. J. Plus, 129, 3, 10.1140/epjp/i2014-14003-9 Kalam, 2012, Anisotropic strange star with de sitter spacetime, Eur. Phys. J. C, 72, 2248, 10.1140/epjc/s10052-012-2248-y Krori, 1975, A singularity free solution for a charged fluid sphere in general relativity, J. Phys. A, 8, 508, 10.1088/0305-4470/8/4/012 Rahaman, 2012, Singularity-free dark energy star, Gen. Relativ. Grav., 44, 107, 10.1007/s10714-011-1262-y Rahaman, 2012, Strange stars in Kroribarua space-time, Eur. Phys. J. C, 72, 2071, 10.1140/epjc/s10052-012-2071-5 Mak, 2004, Quark stars admitting a one-parameter group of conformal motions, Int. J. Mod. Phys. D, 13, 149, 10.1142/S0218271804004451 Mustafa, 2020, Realistic solutions of fluid spheres in f(G,T) gravity under Karmarkar condition, Ann. Phys., 413, 168059, 10.1016/j.aop.2019.168059 Lake, 2003, All static spherically symmetric perfect-fluid solutions of Einstein’s equations, Phys.Rev. D, 67, 104015, 10.1103/PhysRevD.67.104015 Maurya, 2017, Generating physically realizable stellar structures via embedding, Eur. Phys. J. C, 77, 347, 10.1140/epjc/s10052-017-4916-4 Singh1, 2017, Physical viability of fluid spheres satisfying the Karmarkar condition, Eur. Phys. J. C, 77, 100, 10.1140/epjc/s10052-017-4612-4 Bhar, 2019, Charged compact star model in einstein-maxwell-gauss-bonnet gravity, Astrophys. Space Sci., 364, 186, 10.1007/s10509-019-3675-0 Abreu, 2007, Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects, Class. Quantum Grav., 24, 4631, 10.1088/0264-9381/24/18/005 Hillebrandt, 1976, Anisotropic neutron star models - stability against radial and nonradial pulsations, Astron. Astrophys., 53, 283 Bohmer, 2006, Bounds on the basic physical parameters for anisotropic compact general relativistic objects, Class. Quantum Grav., 23, 6479, 10.1088/0264-9381/23/22/023 Ivanov, 2002, Static charged perfect fluid spheres in general relativity, Phys. Rev. D, 65, 104001, 10.1103/PhysRevD.65.104001