Anisotropic dispersion with a consistent smoothed particle hydrodynamics scheme

Advances in Water Resources - Tập 131 - Trang 103374 - 2019
Carlos E. Alvarado-Rodríguez1,2, Leonardo Di G. Sigalotti3, Jaime Klapp2
1Departamento de Ingeniería Química, DCNyE, Universidad de Guanajuato, Noria Alta S/N, 36000 Guanajuato, Guanajuato, Mexico
2Departamento de Física, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca km. 36.5, La Marquesa, Ocoyoacac 52750, Estado de México, Mexico
3Área de Física de Procesos Irreversibles, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco (UAM-A), Av. San Pablo 180, Ciudad de México 02200, Mexico

Tài liệu tham khảo

Avesani, 2014, A new class of moving-least-squares WENO–SPH schemes, J. Comput. Phys., 270, 278, 10.1016/j.jcp.2014.03.041 Avesani, 2015, Smooth particle hydrodynamics with nonlinear moving-least-squares WENO reconstruction to model anisotropic dispersion in porous media, Adv. Water Resour., 80, 43, 10.1016/j.advwatres.2015.03.007 Bear, 1988 Beaudoin, 2003, Simulation of anisotropic diffusion by means of a diffusion velocity method, J. Comput. Phys., 186, 122, 10.1016/S0021-9991(03)00024-X Brady, 1988, Dispersion in Porous Media, Vol. 152, 107 Cattaneo, 1948, Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ. Modena e Reggio Emilia, 3, 83 Chai, 2014, Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7, 1247, 10.5194/gmd-7-1247-2014 Cleary, 1999, Conduction modelling using smoothed particle hydrodynamics, J. Comput. Phys., 148, 227, 10.1006/jcph.1998.6118 Compte, 1997, The generalized cattaneo equation for the description of anomalous transport processes, J. Phys. A, 30, 7277, 10.1088/0305-4470/30/21/006 Crespo, 2015, DualSPHysics: open-source parallel cfd solver based on smoothed particle hydrodynamics (sph), Comput. Phys. Commun., 187, 204, 10.1016/j.cpc.2014.10.004 Degond, 1989, The weighted particle method for convection-diffusion equations. part 2: the anisotropic case, Math. Comput., 53, 509 Degond, 1990, A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Stat. Comput., 11, 293, 10.1137/0911018 Dehnen, 2012, Improving convergence in smoothed particle hydrodynamics without pairing instability, Mon. Not. R. Astron. Soc., 425, 1068, 10.1111/j.1365-2966.2012.21439.x Gingold, 1977, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. astr. Soc., 181, 375, 10.1093/mnras/181.3.375 Gómez-Gesteira, 2012, SPHYsics – development of a free-surface fluid solver – part 1: theory and formulations, Comput. Geosci., 48, 289, 10.1016/j.cageo.2012.02.029 Herrera, 2013, An assessment of particle methods for approximating anisotropic dispersion, Int. J. Numer. Meth. Fluids, 71, 634, 10.1002/fld.3676 Herrera, 2009, A meshless method to simulate solute transport in heterogeneous porous media, Adv. Water Resour., 32, 413, 10.1016/j.advwatres.2008.12.005 Hunt, 2010, Predicting dispersion in porous media, Complexity, 16, 43, 10.1002/cplx.20322 Koch, 1987, Nonlocal dispersion in porous media: nonmechanical effects, Chem. Eng. Sci., 42, 1377, 10.1016/0009-2509(87)85010-8 Lewis, 2010, Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments, J. Contam. Hydrol., 115, 1, 10.1016/j.jconhyd.2010.04.001 Lipnikov, 2009, Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, J. Comput. Phys., 228, 703, 10.1016/j.jcp.2008.09.031 Liu, 2006, Restoring particle consistency in smoothed particle hydrodynamics, Appl. Numer. Math., 56, 19, 10.1016/j.apnum.2005.02.012 Mendez, 2010 Mlacnik, 2006, Unstructured grid optimization for improved monotonicity of elliptic equations with highly anisotropic coefficients, J. Comput. Phys., 216, 337, 10.1016/j.jcp.2005.12.007 Monaghan, 1992, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543, 10.1146/annurev.aa.30.090192.002551 Morris, 1997, Modeling low reynolds number incompressible flows using SPH, J. Comput. Phys., 136, 214, 10.1006/jcph.1997.5776 Español, 2003, Smoothed dissipative particle dynamics, Phys. Rev. E, 026705, 10.1103/PhysRevE.67.026705 Nordbotten, 2005, Monotonicity conditions for control volume methods on uniform parallelogram grids in homogeneous media, Comput. Geosci., 9, 61, 10.1007/s10596-005-5665-2 Parkinson, 2000, Transport of nitrogen in soil water following the application of animal manures to sloping grassland, Hydrol. Sci. J., 45, 61, 10.1080/02626660009492306 Potier, 2005, Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes, Comptes Rendus Math., 341, 787 Poulsen, 2008, Simple and rapid method for measuring gas dispersion in porous media: methodology and applications, Soil Sci., 173, 169, 10.1097/SS.0b013e31816408c9 Rasio, 2000, Particle methods in astrophysical fluid dynamics, Prog. Theoret. Phys. Suppl., 138, 609, 10.1143/PTPS.138.609 Read, 2010, Resolving mixing in smoothed particle hydrodynamics, Mon. Not. R. Astron. Soc., 405, 1513 Rosswog, 2015, SPH Methods in the modelling of compact objects, Living Rev. Comput. Astrophys., 1, 1, 10.1007/lrca-2015-1 Scheidegger, 1961, General theory of dispersion in porous media, J. Geophys. Res., 66, 3273, 10.1029/JZ066i010p03273 Scher, 1975, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B, 12, 2455, 10.1103/PhysRevB.12.2455 Sharma, 2010, Gas dispersion and immobile gas content in granular porous media: effect of particle size nonuniformity, Soil Sci., 175, 426, 10.1097/SS.0b013e3181f0edaf Sigalotti, 2016, On the kernel and particle consistency in smoothed particle hydrodynamics, Appl. Numer. Math., 108, 242, 10.1016/j.apnum.2016.05.007 Sigalotti, 2019, A new insight into the consistency of the SPH interpolation formula, Appl. Math. Comput., 356, 50 Tran-Duc, 2016, Simulation of anisotropic diffusion processes in fluids with smoothed particle hydrodynamics, Int. J. Numer. Meth. Fluids, 82, 730, 10.1002/fld.4238 Wendland, 1995, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4, 389, 10.1007/BF02123482 Yildiz, 2009, SPH With multiple boundary tangent method, Int. J. Numer. Meth. Eng., 77, 1416, 10.1002/nme.2458 Yuan, 2008, Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phys., 227, 6288, 10.1016/j.jcp.2008.03.007 Zhu, 2015, Numerical convergence in smoothed particle hydrodynamics, Astrophys. J., 800, 6(13pp), 10.1088/0004-637X/800/1/6 Zimmermann, 2001, Simulation of pollutant transport using a particle method, J. Comput. Phys., 173, 322, 10.1006/jcph.2001.6879