Anisotropic dispersion with a consistent smoothed particle hydrodynamics scheme
Tài liệu tham khảo
Avesani, 2014, A new class of moving-least-squares WENO–SPH schemes, J. Comput. Phys., 270, 278, 10.1016/j.jcp.2014.03.041
Avesani, 2015, Smooth particle hydrodynamics with nonlinear moving-least-squares WENO reconstruction to model anisotropic dispersion in porous media, Adv. Water Resour., 80, 43, 10.1016/j.advwatres.2015.03.007
Bear, 1988
Beaudoin, 2003, Simulation of anisotropic diffusion by means of a diffusion velocity method, J. Comput. Phys., 186, 122, 10.1016/S0021-9991(03)00024-X
Brady, 1988, Dispersion in Porous Media, Vol. 152, 107
Cattaneo, 1948, Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ. Modena e Reggio Emilia, 3, 83
Chai, 2014, Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7, 1247, 10.5194/gmd-7-1247-2014
Cleary, 1999, Conduction modelling using smoothed particle hydrodynamics, J. Comput. Phys., 148, 227, 10.1006/jcph.1998.6118
Compte, 1997, The generalized cattaneo equation for the description of anomalous transport processes, J. Phys. A, 30, 7277, 10.1088/0305-4470/30/21/006
Crespo, 2015, DualSPHysics: open-source parallel cfd solver based on smoothed particle hydrodynamics (sph), Comput. Phys. Commun., 187, 204, 10.1016/j.cpc.2014.10.004
Degond, 1989, The weighted particle method for convection-diffusion equations. part 2: the anisotropic case, Math. Comput., 53, 509
Degond, 1990, A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Stat. Comput., 11, 293, 10.1137/0911018
Dehnen, 2012, Improving convergence in smoothed particle hydrodynamics without pairing instability, Mon. Not. R. Astron. Soc., 425, 1068, 10.1111/j.1365-2966.2012.21439.x
Gingold, 1977, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. astr. Soc., 181, 375, 10.1093/mnras/181.3.375
Gómez-Gesteira, 2012, SPHYsics – development of a free-surface fluid solver – part 1: theory and formulations, Comput. Geosci., 48, 289, 10.1016/j.cageo.2012.02.029
Herrera, 2013, An assessment of particle methods for approximating anisotropic dispersion, Int. J. Numer. Meth. Fluids, 71, 634, 10.1002/fld.3676
Herrera, 2009, A meshless method to simulate solute transport in heterogeneous porous media, Adv. Water Resour., 32, 413, 10.1016/j.advwatres.2008.12.005
Hunt, 2010, Predicting dispersion in porous media, Complexity, 16, 43, 10.1002/cplx.20322
Koch, 1987, Nonlocal dispersion in porous media: nonmechanical effects, Chem. Eng. Sci., 42, 1377, 10.1016/0009-2509(87)85010-8
Lewis, 2010, Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments, J. Contam. Hydrol., 115, 1, 10.1016/j.jconhyd.2010.04.001
Lipnikov, 2009, Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, J. Comput. Phys., 228, 703, 10.1016/j.jcp.2008.09.031
Liu, 2006, Restoring particle consistency in smoothed particle hydrodynamics, Appl. Numer. Math., 56, 19, 10.1016/j.apnum.2005.02.012
Mendez, 2010
Mlacnik, 2006, Unstructured grid optimization for improved monotonicity of elliptic equations with highly anisotropic coefficients, J. Comput. Phys., 216, 337, 10.1016/j.jcp.2005.12.007
Monaghan, 1992, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543, 10.1146/annurev.aa.30.090192.002551
Morris, 1997, Modeling low reynolds number incompressible flows using SPH, J. Comput. Phys., 136, 214, 10.1006/jcph.1997.5776
Español, 2003, Smoothed dissipative particle dynamics, Phys. Rev. E, 026705, 10.1103/PhysRevE.67.026705
Nordbotten, 2005, Monotonicity conditions for control volume methods on uniform parallelogram grids in homogeneous media, Comput. Geosci., 9, 61, 10.1007/s10596-005-5665-2
Parkinson, 2000, Transport of nitrogen in soil water following the application of animal manures to sloping grassland, Hydrol. Sci. J., 45, 61, 10.1080/02626660009492306
Potier, 2005, Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes, Comptes Rendus Math., 341, 787
Poulsen, 2008, Simple and rapid method for measuring gas dispersion in porous media: methodology and applications, Soil Sci., 173, 169, 10.1097/SS.0b013e31816408c9
Rasio, 2000, Particle methods in astrophysical fluid dynamics, Prog. Theoret. Phys. Suppl., 138, 609, 10.1143/PTPS.138.609
Read, 2010, Resolving mixing in smoothed particle hydrodynamics, Mon. Not. R. Astron. Soc., 405, 1513
Rosswog, 2015, SPH Methods in the modelling of compact objects, Living Rev. Comput. Astrophys., 1, 1, 10.1007/lrca-2015-1
Scheidegger, 1961, General theory of dispersion in porous media, J. Geophys. Res., 66, 3273, 10.1029/JZ066i010p03273
Scher, 1975, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B, 12, 2455, 10.1103/PhysRevB.12.2455
Sharma, 2010, Gas dispersion and immobile gas content in granular porous media: effect of particle size nonuniformity, Soil Sci., 175, 426, 10.1097/SS.0b013e3181f0edaf
Sigalotti, 2016, On the kernel and particle consistency in smoothed particle hydrodynamics, Appl. Numer. Math., 108, 242, 10.1016/j.apnum.2016.05.007
Sigalotti, 2019, A new insight into the consistency of the SPH interpolation formula, Appl. Math. Comput., 356, 50
Tran-Duc, 2016, Simulation of anisotropic diffusion processes in fluids with smoothed particle hydrodynamics, Int. J. Numer. Meth. Fluids, 82, 730, 10.1002/fld.4238
Wendland, 1995, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4, 389, 10.1007/BF02123482
Yildiz, 2009, SPH With multiple boundary tangent method, Int. J. Numer. Meth. Eng., 77, 1416, 10.1002/nme.2458
Yuan, 2008, Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phys., 227, 6288, 10.1016/j.jcp.2008.03.007
Zhu, 2015, Numerical convergence in smoothed particle hydrodynamics, Astrophys. J., 800, 6(13pp), 10.1088/0004-637X/800/1/6
Zimmermann, 2001, Simulation of pollutant transport using a particle method, J. Comput. Phys., 173, 322, 10.1006/jcph.2001.6879