Anisotropic and p, q-nonlinear partial differential equations

Rendiconti Lincei - Tập 31 - Trang 295-301 - 2020
Paolo Marcellini1,2
1University of Firenze, Firenze, Italy
2Dipartimento di Matematica e Informatica, Firenze, Italy

Tóm tắt

Anisotropic partial differential equations recently received a large interest in the mathematical literature, due to their applications to double and multiphase variational energies, as well as to anisotropic energies in integral form. More specifically, from a mathematical point of view, we need to consider a generalization of the classical Laplacian elliptic and parabolic partial differential equations, as well as the nonlinear p-Laplacian equations, which naturally arises new and interesting mathematical questions, nowadays only partially solved in the context of anisotropic p, q-growth nonlinear elliptic and parabolic partial differential equations. In this context, we describe some “mathematical pathologies”; more precisely, some singularities in the potential generated by some anisotropic energies. The singularities appear if the anisotropy of the energy is too large in some directions, while these singularities do not appear, not only if the energy is isotropic with respect to all directions, but also even if we allow an energy integral with a mild anisotropy.

Tài liệu tham khảo

Baroni P, Colombo M, Mingione G (2015) Harnack inequalities for double phase functionals. Nonlinear Anal 121:206–222 Baroni P, Colombo M, Mingione G (2016) Non-autonomous functionals, borderline cases and related function classes. St Petersburg Mat J 27:347–379 Baroni P, Colombo M, Mingione G (2018) Regularity for general functionals with double phase. Calc Var 57:62. https://doi.org/10.1007/s00526-018-1332-z Beck L, Mingione G (2019) Lipschitz bounds and non-uniformly ellipticity. Commun Pure Appl Math (to appear) Boccardo L, Marcellini P (1976) Sulla convergenza delle soluzioni di disequazioni variazionali. Ann Mat Pura Appl 110:137–159 Boccardo L, Marcellini P, Sbordone C (1990) Regularity for variational problems with sharp non standard growth conditions. Boll Un Mat Ital 4–A:219–225 Boccardo L, Gallouët T, Marcellini P (1996) Anisotropic equations in \(L^1\). Differ Integral Equ 9:209–212 Bögelein V, Duzaar F, Marcellini P (2013) Parabolic equations with p, q-growth. J Math Pur Appl 100:535–563 Bögelein V, Duzaar F, Marcellini P (2013) Parabolic systems with \(p, q-\)growth: a variational approach. Arch Ration Mech Anal 210:219–267 Bögelein V, Duzaar F, Marcellini P (2014) Existence of evolutionary variational solutions via the calculus of variations. J Differ Equ 256:3912–3942 Bögelein V, Duzaar F, Marcellini P (2015) A time dependent variational approach to image restoration. SIAM J Imaging Sci 8:398–428 Bögelein V, Duzaar F, Marcellini P, Signoriello S (2015) Nonlocal diffusion equations. J Math Anal Appl 432:398–428 Bögelein V, Duzaar F, Marcellini P, Signoriello S (2017) Parabolic equations and the bounded slope condition. Ann Inst H Poincare Anal Non Lineair 34:355–379 Bögelein V, Duzaar F, Marcellini P, Scheven C (2018) Doubly nonlinear equations of porous medium type. Arch Ration Mech Anal 229:503–545 Bögelein V, Duzaar F, Marcellini P, Scheven C (2018) A variational approach to doubly nonlinear equations. Atti Accad Naz Lincei Rend Lincei Mat Appl. 29(4):739–772. https://doi.org/10.4171/RLM/832 Botteron B, Marcellini P (1991) A general approach to the existence of minimizers of one-dimensional non-coercive integrals of the calculus of variations. Ann l’Inst Henri Poincare Non Linear Anal 8:197–223 Bousquet P, Brasco L (2018) Lipschitz regularity for orthotropic functionals with nonstandard growth conditions. arXiv:1810.03837v1(Preprint) Carozza M, Giannetti F, Leonetti F, di Napoli A Passarelli (2018) Pointwise bounds for minimizers of some anisotropic functionals. Nonlinear Anal 177:254–269 Chlebicka I (1918) A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces. Nonlinear Anal 175:1–27 Colombo M, Mingione G (2015) Regularity for double phase variational problems. Arch Rat Mech Anal 215(2):443–496 Colombo M, Mingione G (2015) Bounded minimisers of double phase variational integrals. Arch Ration Mech Anal 218(1):219–273 Cupini G, Marcellini P, Mascolo E (2009) Regularity under sharp anisotropic general growth conditions. Discret Contin Dyn Syst Ser B 11:66–86 Cupini G, Marcellini P, Mascolo E (2012) Local boundedness of solutions to quasilinear elliptic systems. Manuscripta Math. 137:287–315 Cupini G, Marcellini P, Mascolo E (2013) Local boundedness of solutions to some anisotropic elliptic systems. II. Stationary problems 169–186, contemporary mathematics. Recent trends in nonlinear partial differential equations, vol 595. American Mathematical Socirty, Providence Cupini G, Marcellini P, Mascolo E (2014) Existence and regularity for elliptic equations under \(p, q-\text{ growth }\). Adv Differ Equ 19:693–724 Cupini G, Marcellini P, Mascolo E (2015) Local boundedness of minimizers with limit growth conditions. J Optim Theory Appl 166:1–22 Cupini G, Giannetti F, Giova R, di Napoli A Passarelli (2017) Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients. Nonlinear Anal 54:7–24 Cupini G, Marcellini P, Mascolo E (2017) Regularity of minimizers under limit growth conditions. Nonlinear Anal 153:294–310 Cupini G, Marcellini P, Mascolo E (2018) Nonuniformly elliptic energy integrals with \(p, q-\)growth. Nonlinear Anal 177:312–324 Dal Maso G (1993) An introduction to \(\varGamma \) convergence, progress in nonlinear differential equations and their applications, vol 8. Birkhäuser, Boston De Filippis C (2018) Higher integrability for constrained minimizers of integral functionals with \((p, q)-\)growth in low dimension. Nonlinear Anal 170:1–20 De Filippis C, Oh J (2019) Regularity for multi-phase variational problems. J Differ Equ 267:1631–1670 De Filippis C, Palatucci G (2019) H ölder regularity for nonlocal double phase equations. J Differ Equ 267:547–586 De Giorgi E, Franzoni T (1975) Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl Sci Fis Mat Nat 58:842–850 De Giorgi E, Spagnolo S (1973) Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine. Boll Un Mat Ital 8:391–411 Di Marco T, Marcellini P (2019) A-priori gradient bound for elliptic systems under either slow or fast growth conditions. arXiv:1910.04158(to appear) DiBenedetto E, Gianazza U, Vespri V (2016) Remarks on local boundedness and local Hölder continuity of local weak solutions to anisotropic p-Laplacian type equations. J Ellipt Parabol Equ 2:157–169 Diening L, Harjulehto P, Hästö P, Ružicka M (2011) Lebesgue and Sobolev spaces with variable exponents. Lecture notes in mathematics, vol 2017. Springer, Heidelberg Düzgun G, Marcellini P, Vespri V (2014) Space expansion for a solution of an anisotropic p-Laplacian equation by using a parabolic approach. Riv Math Univ Parma 5:93–111 Düzgun G, Marcellini P, Vespri V (2014) An alternative approach to the Hölder continuity of solutions to some elliptic equations. Nonlinear Anal 94:133–141 Eleuteri M, Marcellini P, Mascolo E (2016) Lipschitz estimates for systems with ellipticity conditions at infinity. Ann Mat Pura Appl 195:1575–1603 Eleuteri M, Marcellini P, Mascolo E (2016) Lipschitz continuity for functionals with variable exponents. Rend Lincei Mat Appl 27:61–87 Eleuteri M, Marcellini P, Mascolo E (2019) Local Lipschitz continuity of minimizers with mild assumptions on the \(x\)-dependence. Discret Cont Din Syst 12:251–265 Eleuteri M, Marcellini P, Mascolo E (2019) Regularity for scalar integrals without structure conditions. Adv Calc Var. https://doi.org/10.1515/acv-2017-0037 Eleuteri M, Passarelli di A (2017) Higher differentiability for solutions to a class of obstacle problems. Calc Var 57:115. https://doi.org/10.1007/s00526-018-1387-x Esposito L, Leonetti F, Mingione G (2004) Sharp regularity for functionals with \((p, q)\) growth. J Differ Equ 204:5–55 Ferraris G (2016) Max von Laue tra raggi X e cristalli. Acc Sc Torino Mem Sc Fis 40:47–61 Ferraris G (2019) Proficue idee sulla struttura della materia. Quad Accad Sci Torino 30:7–20 Fusco N, Marcellini P, Ornelas A (1998) Existence of minimizers for some non convex one-dimensional integrals. Portug Math 55:167–186 Giaquinta M (1987) Growth conditions and regularity, a counterexample. Manuscr Math 59:245–248 Harjulehto P, Häst ö P, Toivanen O (2017) Hölder regularity of quasiminimizers under generalized growth conditions. Calc Var Partial Differ Equ 56:26 Hästö P, Ok J (2019) Maximal regularity for local minimizers of non-autonomous functionals. arXiv:1902.00261v2(Preprint) Liskevich V, Skrypnik I (2009) Hö lder continuity of solutions to an anisotropic elliptic equation. Nonlinear Anal 71:1699–1708 Marcellini P (1987) Un example de solution discontinue d’un problème variationnel dans le cas scalaire, Preprint 11, Istituto Matematico “U.Dini”, Università di Firenze Marcellini P (1973) Su una convergenza di funzioni convesse. Boll Un Mat Ital 8:137–158 Marcellini P (1975) Un teorema di passaggio al limite per la somma di funzioni convesse. Boll Un Mat Ital 11:107–124 Marcellini P (1979) Convergence of second order linear elliptic operators. Boll Un Mat Ital B 16:278–290 Marcellini P (1984) Quasiconvex quadratic forms in two dimensions. Appl Math Optim 11:183–189 Marcellini P (1989) The stored-energy for some discontinuous deformations in nonlinear elasticity. Partial differential equations and the calculus of variations. Progress in nonlinear differential equations and applications, vol II. Birkhäuser, Boston, pp 767–786 Marcellini P (1996) Everywhere regularity for a class of elliptic systems without growth conditions. Ann Scuola Norm Sup Pisa Cl Sci 23:1–25 Marcellini P (1997) Some recent developments in the study of Hilbert’s 19th and 20th problems (Italian). Boll Un Mat Ital A (7) 11:323–352 Marcellini P (2019) Regularity under general and \(p, q\)-growth conditions. Discret Cont Din Syst. https://doi.org/10.3934/dcdss.2020155 Marcellini P (2019) A variational approach to parabolic equations under general and \(p, q\)-growth conditions. Nonlinear Anal. https://doi.org/10.1016/j.na.2019.02.010 Marcellini P, Papi G (2006) Nonlinear elliptic systems with general growth. J Differ Equ 221:412–443 Marcellini P, Sbordone C (1977) An approach to the asymptotic behaviour of elliptic–parabolic operators. J Math Pures Appl 56:157–182 Marino A, Spagnolo S (1969) Un tipo di approssimazione dell’operatore \(\sum _{ij}D_{i}(a_{ij}\left( x\right) D_{j})\) con operatori \(\sum _{j}D_{j}(\beta \left( x\right) D_{j})\). Ann Sc Norm Sup Pisa Cl Sci 23:657–673 Mascolo E, Migliorini A (2003) Everywhere regularity for vectorial functionals with general growth. ESAIM Control Optim Calc Var 9:399–418 Mingione G (2006) Regularity of minima: an invitation to the dark side of the calculus of variations. Appl Math 51:355–426 Piro-Vernier S, Ragnedda F, Vespri V (2019) Hölder regularity for bounded solutions to a class of anisotropic operators. Manuscripta Math 158:421–439 Rǎdulescu V, Zhang Q (2018) Double phase anisotropic variational problems and combined effects of reaction and absorption terms. J Math Pures Appl 118:159–203 Sbordone C (1973) Su una caratterizzazione degli operatori differenziali del 2o ordine. Atti Accad Naz Lincei Rend Cl Sci Fis Mat Nat 54:365–372 Sbordone C (1974) Alcune questioni di convergenza per operatori differenziali del \(2^{o}\) ordine. Boll Un Mat Ital 10:672–682 Sbordone C (1975) Su alcune applicazioni di un tipo di convergenza variazionale. Ann Sc Norm Sup Pisa Cl Sci 2:617–638 Spagnolo S (1968) Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann Sc Norm Sup Pisa 22:571–597 Tartar L (1979) Homogénéisation et compacité par compensation, Séminaire Goulaouic-Schwartz (1978/1979), Exp. No. 9, 9 pp., École Polytech, Palaiseau Tartar L (1985) Estimations fines des coefficients homogénéisés, Ennio De Giorgi colloquium (Paris, 1983), Res. Notes in Math., vol 125. Pitman, Boston, MA, pp 168–187 Tartar L (2007) Luc Qu’est-ce que l’homogén éisation? Port Math 64:389–444