Anisotropic Variational Models for Image Denoising Based on Directional Hessian

Journal of Mathematical Imaging and Vision - Tập 65 - Trang 414-436 - 2022
Guangyu Yang1, Weibo Wei1, Zhenkuan Pan1
1College of Computer Science & Technology, Qingdao University, Qingdao, China

Tóm tắt

Anisotropic and high-order diffusion variational models have excellent performances in image coherence and smoothness preserving, respectively. In order to preserve these merits simultaneously in one variational model for image restoration, we propose three second-order anisotropic variational models making use of directional Hessian. The first one is the double-orientational bounded Hessian (DOBH) model; it is an extension to the isotropic bounded Hessian (BH) model. The second is the double-orientational total generalized variation (DOTGV), which is an extension to the total generalized variation (TGV) model. The third is the double-orientational total variation and bounded Hessian (DOTBH) model, which is a hybrid one combining the first-order and second-order directional regularizers. The second-order directional derivatives are designed by Hession and directional vectors which are derived from classic structure tensors. In order to cope with complex calculations of these models, alternating direction method of multipliers (ADMM) algorithms are designed, respectively. Thus, the proposed models can be decomposed into a set of simple sub-problems of optimization, which can be solved by fast FFT method or soft thresholding formulas. In order to improve computational efficiency, fast ADMM algorithms with restart strategy are designed and implemented finally. Experimental results demonstrate better performances compared with previous classical models, especially in large-scale texture restoration.

Tài liệu tham khảo

Scherzer, Otmar: Handbook of Mathematical Methods in Imaging. Springer Verlag New York (2015) Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Springer, New York (2002) Vogel Curtis, R.: Computational Methods for Inverse Problems. Tsinghua University Press, Beijing, China (2011) Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena. 60(1–4), 259–268 (1992) You, Y.L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Proc. A Publ. IEEE Signal Proc. Soc. 9(10), 1723–1730 (2000) Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing. 76(1), 109–133 (2006) Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. Siam J. Imaging Sci. 3(3), 492–526 (2010) Zhu, W., Tai, X.C., Chan, T.: Image segmentation using Euler’s Elastica as the regularization. J. Sci. Comput. 57(2), 414–438 (2013) Witkin, A.P.: Scale space filtering. Read. Comput. Vis. 42(3), 329–332 (1987) Perona, P., Malik, J., Intelligence, M.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. 12(7), 629–639 (2002) Weickert, J.: Anisotropic Diffusion In Image Processing. Teubner Stuttgart (1998) Brox, T., Weickert, J., Burgeth, B., Mrzek, P.: Nonlinear structure tensors. Image Vis. Comput. 24(1), 41–55 (2004) Grasmair, M., Lenzen, F.: Anisotropic total variation filtering. Appl. Math. Optim. 62(3), 323–339 (2010) Bayram, I., Kamasak, M.E.: A Directional Total Variation. In: Signal Processing Conference (2012) Zhang, H., Wang, Y.: Edge adaptive directional total variation. J. Eng. 1(1), 1–2 (2013) Lefkimmiatis, S., Roussos, A., Maragos, P., Unser, M.: Structure tensor total variation. Siam J. Imag. Sci. 8(2), 1090–1122 (2015) Kongskov, R.D., Dong, Y., Knudsen, K.: Directional total generalized variation regularization. BIT Numer. Math. 59, 903–928 (2019) Parisotto, S., Masnou, S., Schonlieb, C.B.: Higher-order total directional variation: analysis. SIAM J. Imag. Sci. 13(1), 474–496 (2020) Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 2, 323–343 (2009) Marius, L., Arvid, L., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Proc. 12(12), 1579–1590 (2003) Ying, W., Sun, J.B., Guo, Z.C.: A New Anisotropic Fourth-Order Diffusion Equation Model Based on Image Feature for Image Denoising. UCLA Computational and Applied Mathematics Report, August 2020, 20-32 (2020) Pang, Z.F., Zhou, Y.M., Wu, T., Li, D.J.: Image denoising via A new anisotropic total variation based model. Signal Proc.: Image Commun. 13, 140–152 (2019) Abderrahim, Elmoataz: Olivier, Lezoray, Sbastien, Bougleux: nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Proc. 17(7), 1047–1060 (2008) Chierchia, G., Pustelnik, N., Pesquet-Popescu, B., Pesquet, J.C.: A non-local structure tensor based approach for multicomponent image recovery problems. IEEE Trans. Image Proc. 23(12), 5531–5544 (2014) Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Proc. 16(8), 2080–2095 (2007) Fu, H., Liu, W., Chen, H., Wang, Z.: An anisotropic gaussian filtering model for image De-Hazing. IEEE Access. 8, 175140–175149 (2020) Raad, L., Oliver, M., Ballester, C., Haro, G., Meinhardt, E.: On anisotropic optical flow inpainting algorithms. Image Proc. Line. 10, 78–104 (2020) Wang, G., Baets, B.D.: Superpixel segmentation based on anisotropic edge strength. J. Imag. 5(6), 57 (2019) Allain, P., Guillo, L., Guillemot, C.: Light Field Denoising Using 4D Anisotropic Diffusion. In: 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1692-1696 (2019) Wei, W., Fang, L., Michael, K.N.: Structural similarity based nonlocal variational models for image restoration. IEEE Trans. Image Proc. 28(9), 4260–4272 (2019) Wei, W., Michael, K.: A nonlocal total variation model for image decomposition: illumination and reflectance. Numer. Math.: Theory, Methods Appl. 7, 334–355 (2014) Pang, Z.F., Zhang, H.L., Luo, S., Zeng, T.: Image denoising based on the adaptive weighted \({\rm {TV}}_{}^P\) regularization. Signal Proc. 167, 1–21 (2020) Li, Z., Malgouyres, F., Zeng, T.: Regularized non-local total variation and application in image restoration. J. Math. Imag. Vis. 59(2), 296–317 (2017) Jia, F., Wong, W.H., Zeng, T.: DDUNet: Dense Dense U-Net with Applications in Image Denoising. In Proceedings of the IEEE/CVF International Conference on Computer Vision. October 11-17, 354-364 (2021) Fang, F., Li, J., Yuan, Y., Zeng, T., Zhang, G.: Multilevel edge features guided network for image denoising. IEEE Trans. Neural Netw. Learn. Syst. 32(9), 3956–3970 (2020) Tschumperl, D.: Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE’s. Int. J. Comput. Vis. 68(1), 65–82 (2006) Chambolle, A., Pock, T.: Vision: a first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. 40(1), 120–145 (2011) Tschumperl, D., Deriche, R.: Vector-valued image regularization with PDEs: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 506–517 (2005) Yin, X.H., Chen, S.L., Wang, L.P., Zhou, B.: Fractional-order difference curvature-driven fractional anisotropic diffusion equation for image super-resolution. Int. J. Mod., Simul., Sci. Comput. 10(1), 1–13 (2019) Mhlich, M., Aach, T.: A Theory of Multiple Orientation Estimation. Computer Vision - ECCV 2006, 9th European Conference on Computer Vision. 3952, 69-82 (2006) Shizawa, M., Mase, K.: Simultaneous Multiple Optical Flow Estimation. In: 10th International Conference on Pattern Recognition. 1, 274-278 (1990) Mota, C., Stuke, I., Aach, T., Barth, E.: Estimation of Multiple Orientations at Corners and Junctions. In, Berlin, Heidelberg 2004. Pattern Recognition. 3175, 163-170 (2004) Steidl, G., Teuber, T.: Anisotropic Smoothing Using Double Orientations. In: Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009. 5567, 477-489 (2009) Aach, T., Mota, C., Stuke, I., Muhlich, M., Barth, E.: Analysis of superimposed oriented patterns. IEEE Trans. Image Proc. A Publ. IEEE Signal Proc. Soc. 15(12), 3690–3700 (2006) Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Proc. 18(11), 2419–2434 (2009) Bioucas-Dias, J.M., Figueiredo, M.: A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Proc. 16(12), 2992–3004 (2008) Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. Siam J. Imag. Sci. 7(3), 1588–1623 (2014) Duan, J.M., Pan, Z.K., Tai, X.C.: Non-local TV models for restoration of color texture images. J. Image Gr. 18(7), 753–760 (2013)