Anisotropic MagnetoResistance (AMR) Instrument to Study the Martian Magnetic Environment from the Surface: Expected Scientific Return

Solar System Research - Tập 57 Số 4 - Trang 307-323 - 2023
Marina Díaz Michelena1, Miguel Ángel Rivero1, Sergio Fernández Romero1, Solmaz Adeli2, Joana S. Oliveira1, Clara Henrich3,2, Alberto Aspás1, M. C. Parrondo1
1Space Systems Subdirectorate, National Institute of Aerospace Technology (INTA), Torrejón de Ardoz, Spain
2Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
3Institute of Geography, University of Cologne, Cologne, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Acuña, M.H., Connerney, J.E.P., Wasilewski, P., Lin, R.P., Anderson, K.A., Carlson, C.W., McFadden, J., Curtis, D.W., Mitchell, D., Reme, H., Mazelle, C., Sauvaud, J. A., D’Uston, C., Cros, A., Medale, J.L., Bauer, S.J., Cloutier, P., Mayhew, M., Winterhalter, D., and Ness, N.F., Magnetic field and plasma observations at Mars: Initial results of Mars Global Surveyor mission, Science, 1998, vol. 279, no. 5357, pp. 1676–1680. https://doi.org/10.1126/science.279.5357.1676

Acuña, M.H., Connerney, J.E., Ness, N.F., Lin, R.P., Mitchell, D., Carlson, C.W., McFadden, J., Anderson, K.A., Reme, H., Mazelle, C., Vignes, D., Wasilewski, P., and Cloutier, P., Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment, Science, 1999, vol. 284, no. 5415, pp. 790–793. https://doi.org/10.1126/science.284.5415.790

Banerjee, S.K., When the compass stopped reversing its poles, Science, 2001, vol. 291, no. 5509, pp. 1714–1715. https://doi.org/10.1126/science.291.5509.1714

Banfield, D., et al., InSight Auxiliary Payload Sensor Suite (APSS), Space Sci. Rev., 2018, vol. 215, no. 4. https://doi.org/10.1007/s11214-018-0570-x

Bartels, J., Heck, N. H., and Johnston, H. F., Geomagnetic three-hour-range indices for the years 1938 and 1939, Terr. Magn. Atmos. Electr., 1940, vol. 45, no. 3, pp. 309–337. https://doi.org/10.1029/TE045i003p00309

Bishop, J.L., Loizeau, D., McKeown, N.K., Saper, L., Dyar, M.D., Des Marais, D.J., Parente, M., and Murchie, S.L., What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars, Planet. Space Sci., 2013, vol. 86, pp. 130–149. https://doi.org/10.1016/j.pss.2013.05.006

Brain, D., Bagenal, A.F., Acuña, M.H., and Connerney, J.E.P., Martian magnetic morphology: Contributions from the solar wind and crust, J. Geophys. Res., 2003, vol. 108, no. A12. https://doi.org/10.1029/2002ja009482

Brain, D.A., Halekas, J.S., Peticolas, L.M., Lin, R.P., Luhmann, J.G. Mitchell, D.L. Delory, G.T., Bougher, S.W., Acuña, M.H., and Rème H., On the origin of aurorae on Mars, Geophys. Res. Lett., 2006, vol. 33, no. 1. https://doi.org/10.1029/2005GL024782

Caballero-Lopez, R.A., Engelbrecht, N.E., and Richardson, J.D., Correlation of long-term cosmic ray modulation with solar activity parameters, Astrophys. J., 2019, vol. 883, no. 1, p. 73. https://doi.org/10.3847/1538-4357/ab3c57

Carter, J., Loizeau, D., Mangold, N., Poulet, F., and Bibring, J.-P., Widespread surface weathering on early Mars: A case for a warmer and wetter climate, Icarus, 2015, vol. 248, pp. 373–382. https://doi.org/10.1016/j.icarus.2014.11.011

Carter, J., Riu, L., Poulet, F., Bibring, J.-P., Langevin, Y., and Gondet, B., A Mars orbital catalog of aqueous alteration signatures (MOCAAS), Icarus, 2022, vol. 389, p. 115164. https://doi.org/10.1016/j.icarus.2022.115164

Civet, F., and P. Tarits, Electrical conductivity of the mantle of Mars from MGS magnetic observations, Earth Planets Space, 2014, vol. 66, no. 85. https://doi.org/10.1186/1880-5981-66-85

Clark, D.A. and Emerson, J.B., Notes on rock magnetization characteristics in applied geophysical studies, Explor. Geophys., 1991, vol. 22, no. 3, pp. 547–555. https://doi.org/10.1071/EG991547

Davis, J.M., Gupta, S., Balme, M., Grindrod, P.M., Fawdon, P., Dickeson, Z.I., and Williams, R.M.E., A diverse array of fluvial depositional systems in Arabia Terra: Evidence for mid-Noachian to early Hesperian rivers on Mars, J. Geophys. Res.: Planets, 2019, vol. 124, no. 7, pp. 1913–1934. https://doi.org/10.1029/2019JE005976

Díaz Michelena, M., Kilian, R., Rivero, M.A., Fernández Romero, S., Ríos, F., Mesa, J.L., and Oyarzún, A., Magnetometric surveys for the non-invasive surface and subsurface interpretation of volcanic structures in planetary exploration, a case study of several volcanoes in the Iberian Peninsula, Remote Sens., 2022, vol. 14, no. 9, no. 2039. https://doi.org/10.3390/rs14092039

Ehresmann, B., Zeitlin, C.J., Hassler, D.M., et al., The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016, Life Sci. Space Res., 2017, vol. 14, pp. 3–11. https://doi.org/10.1016/j.lssr.2017.07.004

Fawdon, P., Grindrod, P., Orgel, C., Stefon-Nash, E., Adeli, S., Balme, M., et al., The geography of Oxia Planum, J. Maps, 2021, vol. 17, no. 2. https://doi.org/10.1080/17445647.2021.1982035

Gary-Bicas, C.E. and Rogers, A.D., Geologic and thermal characterization of Oxia Planum using Mars Odyssey THEMIS data, J. Geophys. Res., 2021, vol. 27, no. 2. https://doi.org/10.1029/2020JE006678

Hargraves, R.B. and Petersen, N., Magnetic properties investigation: The Viking Mars lander, Icarus, 1972, vol. 16, no. 1, pp. 223–227. https://doi.org/10.1016/0019-1035(72)90149-2

Ivanov, M.A., Slyuta, E. N., Grishakina, E.A., and Dmitrovskii, A.A., Geomorphological analysis of ExoMars candidate landing site Oxia Planum, Sol. Syst. Res., 2020, vol. 54, no. 1, pp. 1–14. https://doi.org/10.1134/S0038094620010050

Jakosky, B.M., Lin, R.P., Grebowsky, J.M., et al., The Mars Atmosphere and Volatile Evolution/(MAVEN) mission, Space Sci. Rev., 2015, vol. 195, nos. 1–4, pp. 3–48. https://doi.org/10.1007/s11214-015-0139-x

International Real-time Magnetic Observatory Network. https://intermagnet.github.io/. Accessed September 5, 2022.

Johnson, C.L., Mittelholz, A., Hargraves, B., et al., Crustal and time-varying magnetic fields at the InSight landing site on Mars, Nat. Geosci., 2020, vol. 13, pp. 199–204. https://doi.org/10.1038/s41561-020-0537-x

Kobayashi, D. and Sprenke, K., Lithospheric drift on early Mars: Evidence in the magnetic field, Icarus, 2010, vol. 210, no. 1, pp. 37–42. https://doi.org/10.1016/j.icarus.2010.06.015

Langlais, B. and Thébault, E., A new model of the crustal magnetic field of Mars using MGS and MAVEN, J. Geophys. Res. Planets, 2019, vol. 124, no. 6, pp. 1542–1569. https://doi.org/10.1029/2018JE005854

Lillis, R.J., Robbins, S., Manga, M., Halekas, J.S., and Frey, H.V., Time history of the Martian dynamo from crater magnetic field analysis, J. Geophys. Res. Planets, 2013, vol. 118, no. 7, pp. 1488–1511. https://doi.org/10.1002/jgre.20105

Lillis, R.J., Fillingim, M.O., Ma, Y., Gonzalez-Galindo, F., Forget, F., Johnson, C.L., et al., Modeling wind-driven ionospheric dynamo currents at Mars: Expectations for InSight magnetic field measurements, Geophys. Res. Lett., 2019, vol. 46, no. 10, pp. 5083–5091. https://doi.org/10.1029/2019GL082536

Liu, J., Li, C., Zhang, R. et al., Geomorphic contexts and science focus of the Zhurong landing site on Mars, Nat. Astron., 2022, vol. 6, pp. 65–71. https://doi.org/10.1038/s41550-021-01519-5

Mandon, L., Bowen, A.P., Quantin-Nataf, C., Bridges, J.C., Carter, J., Pan, L., Beck, P., Dehouck, E., Volat, M., Thomas, N., Cremonese, G., Tornabene, L.L., and Thollot, P., Morphological and spectral diversity of the clay-bearing unit at the ExoMars landing site Oxia Planum, Astrobiology, 2021, vol. 21, no. 4, pp. 464–480. https://doi.org/10.1089/ast.2020.2292

Matthiä, D. and Berger, T., The radiation environment on the surface of Mars—numerical calculations of the galactic component with GEANT4/planetocosmics, Life Sci. Space Res., 2017, vol. 14, pp. 57–63. https://doi.org/10.1016/j.lssr.2017.03.005

Michalski, J.R. and Bleacher, J.E., Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars, Nature, 2013, vol. 502, pp. 47–52. https://doi.org/10.1038/nature12482

Milbury, C., Schubert, G., Raymond, C.A., Smrekar, S.E., and Langlais, B., The history of Mars’ dynamo as revealed by modeling magnetic anomalies near Tyrrhenus Mons and Syrtis Major, J. Geophys. Res., 2012, vol. 117, no. E10. https://doi.org/10.1029/2012JE004099

Mittelholz, A., Johnson, C.L., and Lillis, R.J., Global-scale external magnetic fields at Mars measured at satellite altitude, J. Geophys. Res. Planets, 2017, vol. 112, no. 6, pp. 1243–1257. https://doi.org/10.1002/2017JE005308

Mittelholz, A., Johnson, C. L., Thorne, S. N., Joy, S., Barrett, E., Fillingim, M.O., et al., The origin of observed magnetic variability for a sol on Mars from InSight, J. Geophys. Res.: Planets, 2020, vol. 125, no. 9, p. e2020JE006505. https://doi.org/10.1029/2020JE006505

Mittelholz, A., Johnson, C. L., Fillingim, M., Joy, S. P., Espley, J., Halekas, J., et al., Space weather observations with InSight, Geophys. Res. Lett., 2021, vol. 48, no. 22, p. e2021GL095432. https://doi.org/10.1029/2021GL095432

Molina, A., López, I., Prieto-Ballesteros, O., Fernández-Remolar, D., de Pablo, M.Á., and Gómez, F., Coogoon Valles, western Arabia Terra: Hydrological evolution of a complex Martian channel system, Icarus, 2017, vol. 293, pp. 27–44. https://doi.org/10.1016/j.icarus.2017.04.002

Neumann, G.A., Zuber, M.T., Wieczorek, M., Mcgovern, P., Lemoine, F., and Smith, D., Crustal structure of Mars from gravity and topography, J. Geophys. Res.: Planets, 2004, vol. 109, no. E8. https://doi.org/10.1029/2004JE002262

Quantin-Nataf, C., Carter, J., Mandon, L., Thollot, P., Balme, M., Volat, M., Pan, L., Loizeau, D., Millot, C., Breton, S., Dehouck, E., Fawdon, P., Gupta, S., Davis, J., Grindrod, P.M., Pacifici, A., Bultel, B., Allemand, P., Ody, A., Lozach, L., and Broyer, J., Oxia Planum: The landing site for the ExoMars “Rosalind Franklin” rover mission: Geological context and prelanding interpretation, Astrobiology, 2021, vol. 21, no. 3, pp. 345–366. https://doi.org/10.1089/ast.2019.2191

Ramírez-Nicolás, M., Sanchez-Cano, B., Witasse, O., Blelly, P.L., Vázquez, L., Lester, M., The effect of the induced magnetic field on the electron density vertical profile of the Mars’ ionosphere: A Mars Express MARSIS radar data analysis and interpretation, a case study, Planet. Space Sci., 2016, vol. 126, pp. 49–62. https://doi.org/10.1016/j.pss.2016.03.017

Ripka, P., Magnetic sensors: Principles and applications, in Encyclopedia of Materials: Science and Technology, 2007. https://doi.org/10.1016/B978-008043152-9.02158-8

UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation), Sources and Effects of Ionizing Radiation: 2008 Report to the General Assembly with Scientific Annexes, United Nations Scientific Committee on the Effects of Atomic Radiation, New York: United Nations Publications, 2010, vol. 1. ISBN 978-92-1-142274-0.

Vago, J., Witasse, O., Svedhem, H., Baglioni, P., Haldemann, A., Gianfiglio, G., Blancquaert, T., McCoy, D., and Groot, R., ESA ExoMars program: The next step in exploring Mars, Sol. Syst. Res., 2015, vol. 49, pp. 518–528. https://doi.org/10.1134/S0038094615070199

Zou, Y., Zhu, Y., Bai, Y., Wang, L., Jia, Y., Shen, W., Fan, Y., Liu, Y., Wang, C., Zhang, A., Yu, G., Dong, J., Shu, R., He, Z., Zhang, T., Du, A., Fan, M., Yang, J., Zhou, B., Wang, Y., and Peng, Y., Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission, Adv. Space Res., 2021, vol. 67, no. 2, pp. 812–823. https://doi.org/10.1016/j.asr.2020.11.005