Anion exchange membranes: Current status and moving forward

Journal of Polymer Science, Part B: Polymer Physics - Tập 51 Số 24 - Trang 1727-1735 - 2013
Michael A. Hickner1, Andrew M. Herring2, E. Bryan Coughlin3
1Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
2Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, 80401
3Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003

Tóm tắt

ABSTRACT

This short review is meant to provide the reader with highlights in anion exchange membrane research, describe current needs in the field, and point out promising directions for future work. Anion exchange membranes (AEMs) provide one possible route to low platinum or platinum‐free fuel cells with the potential for facile oxidation of complex fuels beyond hydrogen and methanol. AEMs and related stable cationic polymers also have applications in energy storage and other electrochemical technologies such as water electrolyzers and redox flow batteries. While anion exchange membranes have been known for a long time in water treatment applications, materials for electrochemical technology with robust mechanical properties in thin film format have only recently become more widely available. High hydroxide and bicarbonate anion conductivity have been demonstrated in a range of AEM formats, but intrinsic stability of the polymers and demonstration of long device lifetime remain major roadblocks. Novel approaches to stable materials have focused on new types of cations that employ delocalization and steric shielding of the positive center to mitigate nucleophilic attack by hydroxide. A number of promising polymer backbones and membrane architectures have been identified, but limited device testing and a lack of understanding of the degradation mechanisms in operating devices is slowing progress on engineered systems with alkaline fuel cell technology. Our objective is to spur more research in this area to develop fuel cell systems that approach the costs of inexpensive batteries for large‐scale applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1727–1735, 2013

Từ khóa


Tài liệu tham khảo

10.1039/b212164f

10.1002/fuce.200400045

10.1016/j.elecom.2006.03.027

10.1021/cm062407u

10.1149/1.2981860

10.1149/1.3082129

10.1002/anie.200701334

10.1016/j.elecom.2003.08.015

10.1149/1.3483106

10.1039/b703315j

10.1016/j.jpowsour.2005.02.020

10.1016/j.jpowsour.2008.11.065

10.1073/pnas.0810041106

10.1021/jp064898b

10.1016/j.jpowsour.2008.09.024

10.1016/j.jpowsour.2008.03.068

10.1016/j.electacta.2009.12.073

10.1021/ac60255a007

10.1246/bcsj.36.187

10.1021/ie50546a014

Yamane R., 1964, J. Electrochem. Soc. Jpn., 32, 277, 10.5796/jesj.32.3.134

Tsai T. H., 2011, Abstr. Papers Am. Chem. Soc., 241

10.1021/ja211365r

10.1021/ja905242r

10.1021/ja307466s

10.1021/ja908638d

10.1021/ma901606z

10.1016/j.memsci.2004.10.010

10.1016/S0376-7388(01)00434-3

10.1016/j.memsci.2008.06.020

10.1016/j.jhazmat.2004.03.016

10.1021/ma902430y

10.1021/ma901538c

10.1021/mz300486h

10.1039/c2jm14898f

10.1039/a807129b

10.1039/b209020a

10.1002/fuce.200700057

10.1021/ma9017108

10.1002/anie.200806299

10.1002/cssc.201000074

10.1021/ja303067t

10.1002/(SICI)1097-4628(19970509)64:6<1161::AID-APP16>3.0.CO;2-Z

Hibbs M. R., J. Polym. Sci. B: Polym. Phys.

10.1021/ja403671u

10.1039/c2ee22050d

10.1016/j.memsci.2012.01.025

10.1021/jp9122198

10.1021/jp7115577

10.1039/c2ee22466f

10.1021/ma3012784

10.1021/cm2016164

10.1016/j.jpowsour.2012.05.062

10.1039/c0cc01834a

10.1002/cssc.201200298

10.1016/j.ijhydene.2011.05.054

10.1016/0011-9164(90)85002-R

10.1021/am301557w

10.1021/ma201864u

10.1021/cm400468u

U.S. Department of Energy Alkaline Membrane Fuel Cell Workshop available at:http://www1.eere.energy.gov/hydrogenandfuelcells/wkshp_alkaline_membrane.html accessed on August 22 2013.

10.1016/j.ijhydene.2011.03.074

10.1016/j.elecom.2012.01.005

10.1016/j.jpowsour.2009.12.085

10.5796/electrochemistry.79.322

10.1149/1.3576120

10.1149/1.1391727

10.1149/1.2184893

10.1016/j.electacta.2004.11.005

Manke I., 2007, Appl. Phys. Lett., 90, 174105

Pekula N., 2005, Nuclear Instrum. Methods Phys. Res. A‐Acceler. Spectrom. Detect. Assoc. Equip., 542, 134, 10.1016/j.nima.2005.01.090

10.1016/j.jpowsour.2003.11.068

10.1016/j.jpowsour.2006.03.027

10.1016/j.ijhydene.2008.12.100

10.1016/j.jpowsour.2006.10.035

10.1016/S0378-7753(03)00617-7

10.1016/j.jpowsour.2007.04.016

10.1016/j.jpowsour.2009.04.005

10.1016/j.jpowsour.2004.04.010

10.1016/S0378-7753(96)02360-9

10.1149/1.1641033

10.1023/A:1003964201327

10.1149/1.2220960

10.1016/S0013-4686(97)10099-8

10.1016/j.ijhydene.2012.09.074

10.1021/ma301947t

Maes A. M., Electrochim. Acta

10.1149/1.2740005

Grew K. N., 2011, ECS Trans, 1979

10.1016/j.electacta.2009.10.041

10.1016/S0376-7388(00)81563-X

10.1021/cm010144s

10.1016/S0032-3861(00)00384-0

Melissa A., J. Polym. Sci. B: Polym. Phys.

Tsai T.‐H., J. Polym. Sci. B: Polym. Phys.

10.1021/ma302357k

10.1021/ja204166e

10.1016/j.memsci.2009.11.051

10.1016/j.jpowsour.2011.11.023

10.1007/BF01093004

Holdcroft S., 2013, Chem. Mater

10.1039/b600838k