Animal Galectins and Plant Lectins as Tools for Studies in Neurosciences

Current Neuropharmacology - Tập 18 Số 3 - Trang 202-215 - 2020
João Ronielly Campêlo Araújo1, Cauê Barbosa Coelho2, Adriana Rolim Campos3, Renato de Azevedo Moreira3, Ana Cristina de Oliveira Monteiro‐Moreira3
1Rede Nordeste de Biotecnologia (Renorbio), State University of Ceara (UECE), Fortaleza, Ceara, Brazil
2Programa de Pos-Graduacao em Ciencia e Tecnologia Ambiental para o Semiarido (PPGCTAS), State University of Pernambuco, Petrolina, Pernambuco, Brazil
3Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil

Tóm tắt

Lectins are proteins or glycoproteins of non-immunological origin capable of reversibly and specifically binding to glycoconjugates. They exist in free form or associated with cells and are widely distributed in nature, being found in plants, microorganisms, and animals. Due to their characteristics and mainly due to the possibility of reversible binding to glycoconjugates, lectins have stood out as important tools in research involving Neurobiology. These proteins have the ability to modulate molecular targets in the central nervous system (CNS) which may be involved with neuroplasticity, neurobehavioral effects, and neuroprotection. The present report integrates existing information on the activity of animal and plant lectins in different areas of Neuroscience, presenting perspectives to direct new research on lectin function in the CNS, providing alternatives for understanding neurological diseases such as mental disorders, neurodegenerative, and neuro-oncological diseases, and for the development of new drugs, diagnoses and therapies in the field of Neuroscience.

Từ khóa


Tài liệu tham khảo

Sharon N.; Lis H.; History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 2004,14(11),53R-62R

Van Dammes E.J.; Fouquaert E.; Lannoo N.; Vandenborre G.; Schouppe D.; Peumans W.J.; Novel concepts about the role of lectins in the plant cell. Adv Exp Med Biol 2011,705,271-294

Vijayan M.C.; Chandra N.; Lectins current opinion. J Struct Biol 1999,9,707-714

Harrison F.L.; Soluble vertebrate lectins: ubiquitous but inscrutable proteins. J Cell Sci 1991,100(Pt 1),9-14

Barondes S.H.; Cooper D.N.W.; Gitt M.A.; Leffler H.; Galectins. Structure and function of a large family of animal lectins. J Biol Chem 1994,269(33),20807-20810

Loh S.H.; Park J.Y.; Cho E.H.; Nah S.Y.; Kang Y.S.; Animal lectins: potential receptors for ginseng polysaccharides. J Ginseng Res 2017,41(1),1-9

Peumans W.J.; Van Damme J.M.; Barre A.; Rougé P.; Classification of Plant Lectins in Families Of Structurally and Evolutionary Related Proteins. Molecular Immunol Complex Carbohydrates —2 2001,491,27-54

Peumans W.J.; Van Damme E.J.M.; Lectins as plant defense proteins. Plant Physiol 1995,109(2),347-352

Trindade M.B.; Lopes J.L.S.; Soares-Costa A.; Monteiro-Moreira A.C.O.; Moreira R.A.; Oliva M.L.V.; Beltramini L.M.; Structural characterization of novel chitin-binding lectins from the genus Artocarpus and their antifungal activity. Biochim Biophys Acta 2006,1764(1),146-152

Keyaerts E.; Vijgen L.; Pannecouque C.; Van Damme E.; Peumans W.; Egberink H.; Balzarini J.; Van Ranst M.; Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 2007,75(3),179-187

Carvalho Ade.S.; da Silva, M.V.; Gomes, F.S.; Paiva, P.M.G.; Malafaia, C.B.; da Silva, T.D.; Vaz, A.F.M.; da Silva, A.G.; Arruda, I.R.S.; Napoleão, T.H.; Carneiro-da-Cunha, Md.; Correia, M.T.S. Purification, characterization and antibacterial potential of a lectin isolated from Apuleia leiocarpa seeds. Int J Biol Macromol 2015,75,402-408

Silva H.C.; Bari A.U.; Rocha B.A.M.; Nascimento K.S.; Ponte E.L.; Pires A.F.; Delatorre P.; Teixeira E.H.; Debray H.; Assreuy A.M.S.; Nagano C.S.; Cavada B.S.; Purification and primary structure of a mannose/glucose-binding lectin from Parkia biglobosa Jacq. seeds with antinociceptive and anti-inflammatory properties. J Mol Recognit 2013,26(10),470-478

Campos J.K.L.; Araújo C.S.F.; Araújo T.F.S.; Santos A.F.S.; Teixeira J.A.; Lima V.L.M.; Coelho L.C.B.B.; Anti-inflammatory and antinociceptive activities of Bauhinia monandra leaf lectin. Biochim Open 2016,2,62-68

Fontenelle T.P.C.; Lima G.C.; Mesquita J.X.; Lopes J.L.S.; de Brito T.V.; Vieira Júnior F.D.C.; Sales A.B.; Aragão K.S.; Souza M.H.L.P.; Barbosa A.L.D.R.; Freitas A.L.P.; Lectin obtained from the red seaweed Bryothamnion triquetrum: Secondary structure and anti-inflammatory activity in mice. Int J Biol Macromol 2018,112,1122-1130

Kabir S.R.L.; Reza M.A.; Antibacterial activity of Kaempferia rotunda rhizome lectin and its induction of apoptosis in Ehrlich ascites carcinoma cells. Appl Biochem Biotechnol 2014,172(6),2866-2876

Ahmed F.R.S.; Amin R.; Hasan I.; Asaduzzaman A.K.M.; Kabir S.R.; Antitumor properties of a methyl-β-d-galactopyranoside specific lectin from Kaempferia rotunda against Ehrlich ascites carcinoma cells. Int J Biol Macromol 2017,102,952-959

Pathan J.; Mondal S.; Sarkar A.; Chakrabarty D.; Daboialectin, a C-type lectin from Russell’s viper venom induces cytoskeletal damage and apoptosis in human lung cancer cells in vitro. Toxicon 2017,127,11-21

Vanderlei E.S.O.; Patoilo K.K.N.R.; Lima N.A.; Lima A.P.S.; Rodrigues J.A.G.; Silva L.M.C.M.; Lima M.E.P.; Lima V.; Benevides N.M.B.; Antinociceptive and anti-inflammatory activities of lectin from the marine green alga Caulerpa cupressoides. Int Immunopharmacol 2010,10(9),1113-1118

Silva L.M.C.M.; Lima V.; Holanda M.L.; Pinheiro P.G.; Rodrigues J.A.G.; Lima M.E.P.; Benevides N.M.B.; Antinociceptive and anti-inflammatory activities of lectin from marine red alga Pterocladiella capillacea. Biol Pharm Bull 2010,33(5),830-835

Damasceno M.B.M.V.; de Melo Júnior, Jde.M.; Santos, S.A.A.R.; Melo, L.T.M.; Leite, L.H.I.; Vieira-Neto, A.E.; Moreira, Rde.A.; Monteiro-Moreira, A.C.O.; Campos, A.R. Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain. Chem Biol Interact 2016,256,9-15

Panjwani N.; Role of galectins in re-epithelialization of wounds. Ann Transl Med 2014,2(9),89

Cao Z.; Saravanan C.; Chen W.S.; Panjwani N.; Examination of the role of galectins in cell migration and re-epithelialization of wounds. 2015

de Sousa F.D.; Vasconselos P.D.; da Silva A.F.B.; Mota E.F.; da Rocha Tomé A.; Mendes F.R.D.S.; Gomes A.M.M.; Abraham D.J.; Shiwen X.; Owen J.S.; Lourenzoni M.R.; Campos A.R.; Moreira R.A.; Monteiro-Moreira A.C.O.; Hydrogel and membrane scaffold formulations of Frutalin (breadfruit lectin) within a polysaccharide galactomannan matrix have potential for wound healing. Int J Biol Macromol 2019,121,429-442

Yang R.Y.; Rabinovich G.A.; Liu F.T.; Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 2008,10

Nonaka M.; Fukuda M.; Galectin-1 for neuroprotection? Immunity 2012,37(2),187-189

Russi M.A.; Vandresen-Filho S.; Rieger D.K.; Costa A.P.; Lopes M.W.; Cunha R.M.; Teixeira E.H.; Nascimento K.S.; Cavada B.S.; Tasca C.I.; Leal R.B.; ConBr, a lectin from Canavalia brasiliensis seeds, protects against quinolinic acid-induced seizures in mice. Neurochem Res 2012,37(2),288-297

Cavada B.S.; Barbosa T.; Arruda S.; Grangeiro T.B.; Barral-Netto M.; Revisiting proteus: do minor changes in lectin structure matter in biological activity? Lessons from and potential biotechnological uses of the Diocleinae subtribe lectins. Curr Protein Pept Sci 2001,2(2),123-135

Yagi H.; Kato K.; Functional roles of glycoconjugates in the maintenance of stemness and differentiation process of neural stem cells. Glycoconj J 2017,34(6),757-763

Le Mercier M.; Fortin S.; Mathieu V.; Kiss R.; Lefranc F.; Galectins and gliomas. Brain Pathol 2010,20(1),17-27

Starossom S.C.; Mascanfroni I.D.; Imitola J.; Cao L.; Raddassi K.; Hernandez S.F.; Bassil R.; Croci D.O.; Cerliani J.P.; Delacour D.; Wang Y.; Elyaman W.; Khoury S.J.; Rabinovich G.A.; Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 2012,37(2),249-263

Abreu T.M.; Monteiro V.S.; Martins A.B.S.; Teles F.B.; da Conceição Rivanor R.L.; Mota É.F.; Macedo D.S.; de Vasconcelos S.M.M.; Júnior J.E.R.H.; Benevides N.M.B.; Involvement of the dopaminergic system in the antidepressant-like effect of the lectin isolated from the red marine alga Solieria filiformis in mice. Int J Biol Macromol 2018,111,534-541

Stillmark H.; Über Ricin ein giftiges Ferment aus den Samen von Ricinus communis L und einige anderen Euphorbiaceen Inaugural Dissertation,University of Tartu: Dorpat.1888

Boyd W.C.; Shapleigh E.; Specific precipitating activity of plant agglutinins (lectins). Science 1954,119(3091),419

Bies C.; Lehr C.M.; Woodley J.F.; Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev 2004,56(4),425-435

Van Damme E.J.M.; Peumans W.J.; Barre A.; Rouge P.; Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 1998,17,575-692

Moreira Rde.A.; Ainouz I.L.; De Oliveira J.T.; Cavada B.S.; Plant lectins, chemical and biological aspects. Mem Inst Oswaldo Cruz 1991,86(Suppl. 2),211-218

Spilatro S.R.; Cochran G.R.; Walker R.E.; Cablish K.L.; Bittner C.C.; Characterization of a new lectin of soybean vegetative tissues. Plant Physiol 1996,110(3),825-834

Jesberger J.A.; Richardson J.S.; Neurochemical aspects of depression: the past and the future? Int J Neurosci 1985,27(1-2),19-47

Sapolsky R.M.; Why Zebras Don’t Get Ulcers 2004

Fenoglio C.; Genetics and epigenetics in the neurodegenerative disorders of the central nervous system. Neurodegeneriative Diseases 2018,1-20

Braga J.E.F.; Pordeus L.C.; Silva A.T.M.C.; Pimenta F.C.F.; Diniz M.F.F.M.; Almeida R.N.; Ansiedade Patológica: Bases Neurais e Avanços na Abordagem Psicofarmacológica. Rev. Bras. Ciên. Saúde 2010,14,93-100

Papakostas G.I.; The efficacy, tolerability, and safety of contemporary antidepressants 2010,71(Suppl E1)

Tohyama K.; The localization of lectin-binding sites on Schwann cell basal lamina. J Neurocytol 1985,14(1),49-61

Lin S.S.; Levitan I.B.; Concanavalin A: a tool to investigate neuronal plasticity. Trends Neurosci 1991,14(7),273-277

Scherer W.J.; Udin S.B.; Concanavalin A reduces habituation in the tectum of the frog. Brain Res 1994,667(2),209-215

Boehm S.; Huck S.; Presynaptic inhibition by concanavalin A: are alpha-latrotoxin receptors involved in action potential-dependent transmitter release? J Neurochem 1998,71(6),2421-2430

Thalhammer A.; Everts I.; Hollmann M.; Inhibition by lectins of glutamate receptor desensitization is determined by the lectin’s sugar specificity at kainate but not AMPA receptors. Mol Cell Neurosci 2002,21(4),521-533

Fay A.M.; Bowie D.; Concanavalin-A reports agonist-induced conformational changes in the intact GluR6 kainate receptor. J Physiol 2006,572(Pt 1),201-213

Moreira R.A.; Cavada B.S.; Lectin from Canavalia brasiliensis Mart. Isolation, characterization and behavior during germination. Biol Plant 1984,26,113-120

Sanz-Aparicio J.; Hermoso J.; Grangeiro T.B.; Calvete J.J.; Cavada B.S.; The crystal structure of Canavalia brasiliensis lectin suggests a correlation between its quaternary conformation and its distinct biological properties from Concanavalin A. FEBS Lett 1997,405(1),114-118

Rieger D.K.; Navarro E.; Buendia I.; Parada E.; González-Lafuente L.; Leon R.; Costa A.P.; Heinrich I.A.; Nascimento K.S.; Cavada B.S.; Lopez M.G.; Egea J.; Leal R.B.; ConBr, A Lectin Purified from the Seeds of Canavalia brasiliensis, Protects Against Ischemia in Organotypic Culture of Rat Hippocampus: Potential Implication of Voltage-Gated Calcium Channels. Neurochem Res 2017,42(2),347-359

Jacques A.V.; Avaliação do Efeito Neuroprotetor de Lectinas Frente à Neurotoxicidade Glutamatérgica PhD Thesis, Universidade Federal de Santa Catarina: Florianópolis2012

Jacques A.V.; Rieger D.K.; Maestri M.; Lopes M.W.; Peres T.V.; Gonçalves F.M.; Pedro D.Z.; Tasca C.I.; López M.G.; Egea J.; Nascimento K.S.; Cavada B.S.; Leal R.B.; Leal R.B.; Lectin from Canavalia brasiliensis (ConBr) protects hippocampal slices against glutamate neurotoxicity in a manner dependent of PI3K/Akt pathway. Neurochem Int 2013,62(6),836-842

Barauna S.C.; Kaster M.P.; Heckert B.T.; do Nascimento K.S.; Rossi F.M.; Teixeira E.H.; Cavada B.S.; Rodrigues A.L.; Leal R.B.; Antidepressant-like effect of lectin from Canavalia brasiliensis (ConBr) administered centrally in mice. Pharmacol Biochem Behav 2006,85(1),160-169

Rieger D.K.; Costa A.P.; Budni J.; Moretti M.; Barbosa S.G.R.; Nascimento K.S.; Teixeira E.H.; Cavada B.S.; Rodrigues A.L.; Leal R.B.; Leal R.B.; Antidepressant-like effect of Canavalia brasiliensis (ConBr) lectin in mice: evidence for the involvement of the glutamatergic system. Pharmacol Biochem Behav 2014,122,53-60

Araújo J.R.C.; Júnior J.M.A.M.; Damasceno M.B.M.V.; Santos S.A.A.R.; Vieira-Neto A.E.; Lobo M.D.P.; Campos A.R.; Moreira R.A.; Monteiro-Moreira A.C.O.; Neuropharmacological characterization of frutalin in mice: Evidence of an antidepressant-like effect mediated by the NMDA receptor/NO/cGMP pathway. Int J Biol Macromol 2018,112,548-554

Gonçalves F.M.; Freitas A.E.; Peres T.V.; Rieger D.K.; Ben J.; Maestri M.; Costa A.P.; Tramontina A.C.; Gonçalves C.A.; Rodrigues A.L.; Nagano C.S.; Teixeira E.H.; Nascimento K.S.; Cavada B.S.; Leal R.B.; Vatairea macrocarpa lectin (VML) induces depressive-like behavior and expression of neuroinflammatory markers in mice. Neurochem Res 2013,38(11),2375-2384

Leal R.B.; Pinto-Junior V.R.; Osterne V.J.S.; Wolin I.A.V.; Nascimento A.P.M.; Neco A.H.B.; Araripe D.A.; Welter P.G.; Neto C.C.; Correia J.L.A.; Rocha C.R.C.; Nascimento K.S.; Cavada B.S.; Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int J Biol Macromol 2018,114,64-76

Nascimento A.P.M.; Knaut J.L.; Rieger D.K.; Wolin I.A.V.; Heinrich I.A.; Mann J.; Juarez A.V.; Sosa L.D.V.; De Paul A.L.; Moreira C.G.; Silva I.B.; Nobre C.S.; Osterne V.J.S.; Nascimento K.S.; Cavada B.S.; Leal R.B.; Anti-glioma properties ofDVL, a lectin purified from Dioclea violacea. Int J Biol Macromol 2018,120(Pt A),566-577

Pratt J.; Roy R.; Annabi B.; Concanavalin-A-induced autophagy biomarkers requires membrane type-1 matrix metalloproteinase intracellular signaling in glioblastoma cells. Glycobiology 2012,22(9),1245-1255

Pratt J.; Annabi B.; Induction of autophagy biomarker BNIP3 requires a JAK2/STAT3 and MT1-MMP signaling interplay in Concanavalin-A-activated U87 glioblastoma cells. Cell Signal 2014,26(5),917-924

Beltrão E.I.; Medeiros P.L.; Rodrigues O.G.; Figueredo-Silva J.; Valença M.M.; Coelho L.C.B.B.; Carvalho L.B.; Parkia pendula lectin as histochemistry marker for meningothelial tumour. Eur J Histochem 2003,47(2),139-142

Bordet J.; Gay F.P.; ‘Sur les Relations des Sensibilactrices avec l’Aléxine’. Ann Inst Pasteur (Paris) 1906,20,467-498

Drickamer K.; Taylor M.E.; Biology of animal lectins. Annu Rev Cell Biol 1993,9,237-264

Gabius H-J.; Animal lectins. Eur J Biochem 1997,243(3),543-576

Brinda K.V.; Surolia A.; Vishveshwara S.; Insights into the quaternary association of proteins through structure graphs: a case study of lectins. Biochem J 2005,391(Pt 1),1-15

Gabius H.J.; Wu A.M.; The emerging functionality of endogenous lectins: A primer to the concept and a case study on galectins including medical implications. Chang Gung Med J 2006,29(1),37-62

Kilpatrick D.C.; Animal lectins: a historical introduction and overview. Biochim Biophys Acta 2002,1572(2-3),187-197

Anderson K.E.D.; Rice K.G.; Structure and function of mammalian carbohydrate-lectin interactions 2008,2445-2482

Stillman B.N.; Mischel P.S.; Baum L.G.; New roles for galectins in brain tumors--from prognostic markers to therapeutic targets. Brain Pathol 2005,15(2),124-132

Endo T.; Glycans and glycan-binding proteins in brain: galectin-1-induced expression of neurotrophic factors in astrocytes. Curr Drug Targets 2005,6(4),427-436

Sakaguchi M.; Imaizumi Y.; Okano H.; Expression and function of galectin-1 in adult neural stem cells. Cell Mol Life Sci 2007,64(10),1254-1258

Motohashi T.; Nishioka M.; Kitagawa D.; Kawamura N.; Watanabe N.; Wakaoka T.; Kadoya T.; Kunisada T.; Galectin-1 enhances the generation of neural crest cells. Int J Dev Biol 2017,61(6-7),407-413

Morris S.; Ahmad N.; André S.; Kaltner H.; Gabius H.J.; Brenowitz M.; Brewer F.; Quaternary solution structures of galectins-1, -3, and -7. Glycobiology 2004,14(3),293-300

Suzuki Y.; Inoue T.; Yoshimaru T.; Ra C.; Galectin-3 but not galectin-1 induces mast cell death by oxidative stress and mitochondrial permeability transition. Biochim Biophys Acta 2008,1783(5),924-934

Liu F.T.; Patterson R.J.; Wang J.L.; Intracellular functions of galectins. Biochim Biophys Acta 2002,1572(2-3),263-273

Yang R.Y.; Rabinovich G.A.; Liu F.T.; Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 2008,10

Larsen L.; Chen H-Y.; Saegusa J.; Liu F-T.; Galectin-3 and the skin. J Dermatol Sci 2011,64(2),85-91

van der Hoeven N.W.; Hollander M.R.; Yıldırım C.; Jansen M.F.; Teunissen P.F.; Horrevoets A.J.; van der Pouw Kraan T.C.; van Royen N.; The emerging role of galectins in cardiovascular disease. Vascul Pharmacol 2016,81,31-41

Chen H.L.; Liao F.; Lin T.N.; Liu F.T.; Galectins and Neuroinflammation. Glycobiology Nervous System 2014,Vol. 9,517-542

Stancic M.; van Horssen J.; Thijssen V.L.; Gabius H-J.; van der Valk P.; Hoekstra D.; Baron W.; Increased expression of distinct galectins in multiple sclerosis lesions. Neuropathol Appl Neurobiol 2011,37(6),654-671

Heilmann S.; Hummel T.; Margolis F.L.; Kasper M.; Witt M.; Immunohistochemical distribution of galectin-1, galectin-3, and olfactory marker protein in human olfactory epithelium. Histochem Cell Biol 2000,113(3),241-245

Ishibashi S.; Kuroiwa T.; Sakaguchi M.; Sun L.; Kadoya T.; Okano H.; Mizusawa H.; Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke. Exp Neurol 2007,207(2),302-313

Yan Y-P.; Lang B.T.; Vemuganti R.; Dempsey R.J.; Galectin-3 mediates post-ischemic tissue remodeling. Brain Res 2009,1288,116-124

Lerman B.J.; Hoffman E.P.; Sutherland M.L.; Bouri K.; Hsu D.K.; Liu F-T.; Rothstein J.D.; Knoblach S.M.; Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Brain Behav 2012,2(5),563-575

Stancic M.; Slijepcevic D.; Nomden A.; Vos M.J.; de Jonge J.C.; Sikkema A.H.; Gabius H-J.; Hoekstra D.; Baron W.; Galectin-4, a novel neuronal regulator of myelination. Glia 2012,60(6),919-935

Hadari Y.R.; Paz K.; Dekel R.; Mestrovic T.; Accili D.; Zick Y.; Galectin-8. A new rat lectin, related to galectin-4. J Biol Chem 1995,270(7),3447-3453

Yoshida H.; Imaizumi T.; Kumagai M.; Kimura K.; Satoh C.; Hanada N.; Fujimoto K.; Nishi N.; Tanji K.; Matsumiya T.; Mori F.; Cui X-F.; Tamo W.; Shibata T.; Takanashi S.; Okumura K.; Nakamura T.; Wakabayashi K.; Hirashima M.; Sato Y.; Satoh K.; Interleukin-1beta stimulates galectin-9 expression in human astrocytes. Neuroreport 2001,12(17),3755-3758

Liu F-T.; Rabinovich G.A.; Galectins as modulators of tumour progression. Nat Rev Cancer 2005,5(1),29-41

Varki A.; Cummings R.D.; ESKO J.D.; Stanley P.; Hart G.W.; Aebi M.; Darvill A.G.; Kinoshita T.; Packer N.H.; Prestegard J.H.; Schanaar R.L.; Seeberger P.H.; Essentials of Glycobiology 2009

Kuwabara I.; Kuwabara Y.; Yang R.Y.; Schuler M.; Green D.R.; Zuraw B.L.; Hsu D.K.; Liu F.T.; Galectin-7 (PIG1) exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome c release. J Biol Chem 2002,277(5),3487-3497

von Wolff M.; Wang X.; Gabius H.J.; Strowitzki T.; Galectin fingerprinting in human endometrium and decidua during the menstrual cycle and in early gestation. Mol Hum Reprod 2005,11(3),189-194

Rabinovich G.A.; Toscano M.A.; Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 2009,9(5),338-352

Dani N.; Broadie K.; Glycosylated synaptomatrix regulation of trans-synaptic signaling. Dev Neurobiol 2012,72(1),2-21

Curciarello R.; Steele A.; Cooper D.; MacDonald T.T.; Kruidenier L.; Kudo T.; The role of Galectin-1 and Galectin-3 in the mucosal immune response to Citrobacter rodentium infection. PLoS One 2014,9(9)

Gendronneau G.; Sanii S.; Dang T.; Deshayes F.; Delacour D.; Pichard E.; Advedissian T.; Sidhu S.S.; Viguier M.; Magnaldo T.; Poirier F.; Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair. PLoS One 2015,10(3)

Simpson D.L.; Thorne D.R.; Loh H.H.; Developmentally regulated lectin in neonatal rat brain. Nature 1977,266(5600),367-369

Bladier D.; Joubert R.; Avellana-Adalid V.; Kémény J.L.; Doinel C.; Amouroux J.; Caron M.; Purification and characterization of a galactoside-binding lectin from human brain. Arch Biochem Biophys 1989,269(2),433-439

Lutomski D.; Caron M.; Bourin P.; Lefebure C.; Bladier D.; Joubert-Caron R.; Purification and characterization of natural antibodies that recognize a human brain lectin. J Neuroimmunol 1995,57(1-2),9-15

Lee R.T.; Ichikawa Y.; Allen H.J.; Lee Y.C.; Binding characteristics of galactoside-binding lectin (galaptin) from human spleen. J Biol Chem 1990,265(14),7864-7871

Cho M.; Cummings R.D.; Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J Biol Chem 1995,270(10),5198-5206

McGraw J.; Gaudet A.D.; Oschipok L.W.; Kadoya T.; Horie H.; Steeves J.D.; Tetzlaff W.; Ramer M.S.; Regulation of neuronal and glial galectin-1 expression by peripheral and central axotomy of rat primary afferent neurons. Exp Neurol 2005,195(1),103-114

Vas V.; Fajka-Boja R.; Ion G.; Dudics V.; Monostori E.; Uher F.; Biphasic effect of recombinant galectin-1 on the growth and death of early hematopoietic cells. Stem Cells 2005,23(2),279-287

Puche A.C.; Poirier F.; Hair M.; Bartlett P.F.; Key B.; Role of galectin-1 in the developing mouse olfactory system. Dev Biol 1996,179(1),274-287

Camby I.; Le Mercier M.; Lefranc F.; Kiss R.; Galectin-1: a small protein with major functions. Glycobiology 2006,16(11),137R-157R

Akazawa C.; Nakamura Y.; Sango K.; Horie H.; Kohsaka S.; Distribution of the galectin-1 mRNA in the rat nervous system: its transient upregulation in rat facial motor neurons after facial nerve axotomy. Neuroscience 2004,125(1),171-178

Sango K.; Tokashiki A.; Ajiki K.; Horie M.; Kawano H.; Watabe K.; Horie H.; Kadoya T.; Synthesis, localization and externalization of galectin-1 in mature dorsal root ganglion neurons and Schwann cells. Eur J Neurosci 2004,19(1),55-64

Cortegano I.; del Pozo V.; Cárdaba B.; de Andrés B.; Gallardo S.; del Amo A.; Arrieta I.; Jurado A.; Palomino P.; Liu F-T.; Lahoz C.; Galectin-3 down-regulates IL-5 gene expression on different cell types. J Immunol 1998,161(1),385-389

Narciso M.S.; Mietto, Bde.S.; Marques, S.A.; Soares, C.P.; Mermelstein, Cdos.S.; El-Cheikh, M.C.; Martinez, A.M.B. Sciatic nerve regeneration is accelerated in galectin-3 knockout mice. Exp Neurol 2009,217(1),7-15

Mendonça H.R.; Carvalho J.N.A.; Abreu C.A.; Mariano de Souza Aguiar Dos Santos D.; Carvalho J.R.; Marques S.A.; da Costa Calaza K.; Martinez A.M.B.; Lack of Galectin-3 attenuates neuroinflammation and protects the retina and optic nerve of diabetic mice. Brain Res 2018,1700,126-137

Mostacada K.; Oliveira F.L.; Villa-Verde D.M.; Martinez A.M.B.; Lack of galectin-3 improves the functional outcome and tissue sparing by modulating inflammatory response after a compressive spinal cord injury. Exp Neurol 2015,271,390-400

Pesheva P.; Kuklinski S.; Schmitz B.; Probstmeier R.; Galectin-3 promotes neural cell adhesion and neurite growth. J Neurosci Res 1998,54(5),639-654

Pasquini L.A.; Millet V.; Hoyos H.C.; Giannoni J.P.; Croci D.O.; Marder M.; Liu F.T.; Rabinovich G.A.; Pasquini J.M.; Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function. Cell Death Differ 2011,18(11),1746-1756

Regan L.J.; Dodd J.; Barondes S.H.; Jessell T.M.; Selective expression of endogenous lactose-binding lectins and lactoseries glycoconjugates in subsets of rat sensory neurons. Proc Natl Acad Sci USA 1986,83(7),2248-2252

Hynes M.A.; Gitt M.; Barondes S.H.; Jessell T.M.; Buck L.B.; Selective expression of an endogenous lactose-binding lectin gene in subsets of central and peripheral neurons. J Neurosci 1990,10(3),1004-1013

Inagaki Y.; Sohma Y.; Horie H.; Nozawa R.; Kadoya T.; Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties. Eur J Biochem 2000,267(10),2955-2964

McGraw J.; McPhail L.T.; Oschipok L.W.; Horie H.; Poirier F.; Steeves J.D.; Ramer M.S.; Tetzlaff W.; Galectin-1 in regenerating motoneurons. Eur J Neurosci 2004,20(11),2872-2880

Miura T.; Takahashi M.; Horie H.; Kurushima H.; Tsuchimoto D.; Sakumi K.; Nakabeppu Y.; Galectin-1beta, a natural monomeric form of galectin-1 lacking its six amino-terminal residues promotes axonal regeneration but not cell death. Cell Death Differ 2004,11(10),1076-1083

Horie H.; Kadoya T.; Sango K.; Hasegawa M.; Oxidized galectin-1 is an essential factor for peripheral nerve regeneration. Curr Drug Targets 2005,6(4),385-394

Quintá H.R.; Pasquini J.M.; Rabinovich G.A.; Pasquini L.A.; Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury. Cell Death Differ 2014,21(6),941-955

Takaku S.; Niimi N.; Kadoya T.; Yako H.; Tsukamoto M.; Sakumi K.; Nakabeppu Y.; Horie H.; Sango K.; Galectin-1 and galectin-3 as key molecules for peripheral nerve degeneration and regeneration. AIMS Mol Sci 2016,3,325-337

Wu G.; Lu Z.H.; André S.; Gabius H.J.; Ledeen R.W.; Functional interplay between ganglioside GM1 and cross-linking galectin-1 induces axon-like neuritogenesis via integrin-based signaling and TRPC5-dependent Ca influx. J Neurochem 2016,136(3),550-563

Horie H.; Kadoya T.; Hikawa N.; Sango K.; Inoue H.; Takeshita K.; Asawa R.; Hiroi T.; Sato M.; Yoshioka T.; Ishikawa Y.; Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J Neurosci 2004,24(8),1873-1880

Gaudet A.D.; Sweet D.R.; Polinski N.K.; Guan Z.; Popovich P.G.; Galectin-1 in injured rat spinal cord: implications for macrophage phagocytosis and neural repair. Mol Cell Neurosci 2015,64,84-94

Velasco S.; Díez-Revuelta N.; Hernández-Iglesias T.; Kaltner H.; André S.; Gabius H-J.; Abad-Rodríguez J.; Neuronal Galectin-4 is required for axon growth and for the organization of axonal membrane L1 delivery and clustering. J Neurochem 2013,125(1),49-62

Wada M.; Ono S.; Kadoya T.; Kawanami T.; Kurita K.; Kato T.; Decreased galectin-1 immunoreactivity of the skin in amyotrophic lateral sclerosis. J Neurol Sci 2003,208(1-2),67-70

Rinaldi M.; Thomas L.; Mathieu P.; Carabias P.; Troncoso M.F.; Pasquini J.M.; Rabinovich G.A.; Pasquini L.A.; Galectin-1 circumvents lysolecithin-induced demyelination through the modulation of microglial polarization/phagocytosis and oligodendroglial differentiation. Neurobiol Dis 2016,96,127-143

Lutomski D.; Joubert-Caron R.; Lefebure C.; Salama J.; Belin C.; Bladier D.; Caron M.; Anti-galectin-1 autoantibodies in serum of patients with neurological diseases. Clin Chim Acta 1997,262(1-2),131-138

Kato T.; Kurita K.; Seino T.; Kadoya T.; Horie H.; Wada M.; Kawanami T.; Daimon M.; Hirano A.; Galectin-1 is a component of neurofilamentous lesions in sporadic and familial amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2001,282(1),166-172

Chang-Hong R.; Wada M.; Koyama S.; Kimura H.; Arawaka S.; Kawanami T.; Kurita K.; Kadoya T.; Aoki M.; Itoyama Y.; Kato T.; Neuroprotective effect of oxidized galectin-1 in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 2005,194(1),203-211

Kato T.; Ren C.H.; Wada M.; Kawanami T.; Galectin-1 as a potential therapeutic agent for amyotrophic lateral sclerosis. Curr Drug Targets 2005,6(4),407-418

Wang X.; Zhang S.; Lin F.; Chu W.; Yue S.; Elevated galectin-3 levels in the serum of patients with Alzheimer’s disease. Am J Alzheimers Dis Other Demen 2015,30(8),729-732

Ashraf G.M.; Baeesa S.S.; Investigation of Gal-3 expression pattern in serum and cerebrospinal fluid of patients suffering from neurodegenerative disorders. Front Neurosci 2018,12,430

Zhou J.Y.; Afjehi-Sadat L.; Asress S.; Duong D.M.; Cudkowicz M.; Glass J.D.; Peng J.; Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach. J Proteome Res 2010,9(10),5133-5141

Yan J.; Xu Y.; Zhang L.; Zhao H.; Jin L.; Liu W.G.; Weng L-H.; Li Z-H.; Chen L.; Increased expressions of plasma galectin-3 in patients with amyotrophic lateral sclerosis. Chin Med J (Engl) 2016,129(23),2797-2803

Cengiz T.; Türkboyları S.; Gençler O.S.; Anlar Ö.; The roles of galectin-3 and galectin-4 in the idiopatic Parkinson disease and its progression. Clin Neurol Neurosurg 2019,184

Sakaguchi M.; Shingo T.; Shimazaki T.; Okano H.J.; Shiwa M.; Ishibashi S.; Oguro H.; Ninomiya M.; Kadoya T.; Horie H.; Shibuya A.; Mizusawa H.; Poirier F.; Nakauchi H.; Sawamoto K.; Okano H.; A carbohydrate-binding protein, Galectin-1, promotes proliferation of adult neural stem cells. Proc Natl Acad Sci USA 2006,103(18),7112-7117

Yamane J.; Ishibashi S.; Sakaguchi M.; Kuroiwa T.; Kanemura Y.; Nakamura M.; Miyoshi H.; Sawamoto K.; Toyama Y.; Mizusawa H.; Okano H.; Transplantation of human neural stem/progenitor cells overexpressing galectin-1 improves functional recovery from focal brain ischemia in the Mongolian gerbil. Mol Brain 2011,4,35

Kurushima H.; Ohno M.; Miura T.; Nakamura T.Y.; Horie H.; Kadoya T.; Ooboshi H.; Kitazono T.; Ibayashi S.; Iida M.; Nakabeppu Y.; Selective induction of DeltaFosB in the brain after transient forebrain ischemia accompanied by an increased expression of galectin-1, and the implication of DeltaFosB and galectin-1 in neuroprotection and neurogenesis. Cell Death Differ 2005,12(8),1078-1096

Qu W.S.; Wang Y.H.; Wang J.P.; Tang Y.X.; Zhang Q.; Tian D.S.; Yu Z-Y.; Xie M.J.; Wang W.; Galectin-1 enhances astrocytic BDNF production and improves functional outcome in rats following ischemia. Neurochem Res 2010,35(11),1716-1724

Qu W.S.; Wang Y.H.; Ma J.F.; Tian D.S.; Zhang Q.; Pan D.J.Yu.; Yu Z.Y.; Xie M.J.; Wang J.P.; Wang W.; Galectin-1 attenuates astrogliosis-associated injuries and improves recovery of rats following focal cerebral ischemia. J Neurochem 2011,116(2),217-226

Wang J.; Xia J.; Zhang F.; Shi Y.; Wu Y.; Pu H.; Liou A.K.F.; Leak R.K.; Yu X.; Chen L.; Chen J.; Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Sci Rep 2015,5,9621

Rahimian R.; Béland L-C.; Kriz J.; Galectin-3: mediator of microglia responses in injured brain. Drug Discov Today 2018,23(2),375-381

Sirko S.; Irmler M.; Gascón S.; Bek S.; Schneider S.; Dimou L.; Obermann J.; De Souza Paiva D.; Poirier F.; Beckers J.; Hauck S.M.; Barde Y.A.; Götz M.; Astrocyte reactivity after brain injury-: The role of galectins 1 and 3. Glia 2015,63(12),2340-2361

Walther M.; Kuklinski S.; Pesheva P.; Guntinas-Lichius O.; Angelov D.N.; Neiss W.F.; Asou H.; Probstmeier R.; Galectin-3 is upregulated in microglial cells in response to ischemic brain lesions, but not to facial nerve axotomy. J Neurosci Res 2000,61(4),430-435

Doverhag C.; Hedtjärn M.; Poirier F.; Mallard C.; Hagberg H.; Karlsson A.; Sävman K.; Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol Dis 2010,38(1),36-46

Lalancette-Hébert M.; Swarup V.; Beaulieu J.M.; Bohacek I.; Abdelhamid E.; Weng Y.C.; Sato S.; Kriz J.; Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J Neurosci 2012,32(30),10383-10395

Chip S.; Fernández-López D.; Li F.; Faustino J.; Derugin N.; Vexler Z.S.; Genetic deletion of galectin-3 enhances neuroinflammation, affects microglial activation and contributes to sub-chronic injury in experimental neonatal focal stroke. Brain Behav Immun 2017,60,270-281

Dong H.; Wang Z.H.; Zhang N.; Liu S.D.; Zhao J.J.; Liu S.Y.; Serum Galectin-3 level, not Galectin-1, is associated with the clinical feature and outcome in patients with acute ischemic stroke. Oncotarget 2017,8(65),109752-109761

Nishikawa H.; Nakatsuka Y.; Shiba M.; Kawakita F.; Fujimoto M.; Suzuki H.; Increased plasma galectin-3 preceding the development of delayed cerebral infarction and eventual poor outcome in non-severe aneurysmal subarachnoid hemorrhage. Transl Stroke Res 2018,9(2),110-119

Bresalier R.S.; Yan P.S.; Byrd J.C.; Lotan R.; Raz A.; Expression of the endogenous galactose-binding protein galectin-3 correlates with the malignant potential of tumors in the central nervous system. Cancer 1997,80(4),776-787

Verschuere T.; Toelen J.; Maes W.; Poirier F.; Boon L.; Tousseyn T.; Mathivet T.; Gerhardt H.; Mathieu V.; Kiss R.; Lefranc F.; Van Gool S.W.; De Vleeschouwer S.; Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. Int J Cancer 2014,134(4),873-884

Chou S.Y.; Yen S.L.; Huang C.C.; Huang E.Y.; Galectin-1 is a poor prognostic factor in patients with glioblastoma multiforme after radiotherapy. BMC Cancer 2018,18(1),105

Kuklinski S.; Pesheva P.; Heimann C.; Urschel S.; Gloor S.; Graeber S.; Herzog V.; Pietsch T.; Wiestler O.D.; Probstmeier R.; Expression pattern of galectin-3 in neural tumor cell lines. J Neurosci Res 2000,60(1),45-57

Strik H.M.; Schmidt K.; Lingor P.; Tönges L.; Kugler W.; Nitsche M.; Rabinovich G.A.; Bähr M.; Galectin-1 expression in human glioma cells: modulation by ionizing radiation and effects on tumor cell proliferation and migration. Oncol Rep 2007,18(2),483-488

Toussaint L.G.; Nilson A.E.; Goble J.M.; Ballman K.V.; James C.D.; Lefranc F.; Kiss R.; Uhm J.H.; Galectin-1, a gene preferentially expressed at the tumor margin, promotes glioblastoma cell invasion. Mol Cancer 2012,11,32

Liu Z.; Han H.; He X.; Li S.; Wu C.; Yu C.; Wang S.; Expression of the galectin-9-Tim-3 pathway in glioma tissues is associated with the clinical manifestations of glioma. Oncol Lett 2016,11(3),1829-1834

Van Woensel M.; Mathivet T.; Wauthoz N.; Rosière R.; Garg A.D.; Agostinis P.; Mathieu V.; Kiss R.; Lefranc F.; Boon L.; Belmans J.; Van Gool S.W.; Gerhardt H.; Amighi K.; De Vleeschouwer S.; Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy. Sci Rep 2017,7(1),1217

Yamaoka K.; Mishima K.; Nagashima Y.; Asai A.; Sanai Y.; Kirino T.; Expression of galectin-1 mRNA correlates with the malignant potential of human gliomas and expression of antisense galectin-1 inhibits the growth of 9 glioma cells. J Neurosci Res 2000,59(6),722-730

Camby I.; Belot N.; Rorive S.; Lefranc F.; Maurage C.A.; Lahm H.; Kaltner H.; Hadari Y.; Ruchoux M.M.; Brotchi J.; Zick Y.; Salmon I.; Gabius H.J.; Kiss R.; Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol 2001,11(1),12-26

Le Mercier M.; Fortin S.; Mathieu V.; Roland I.; Spiegl-Kreinecker S.; Haibe-Kains B.; Bontempi G.; Decaestecker C.; Berger W.; Lefranc F.; Kiss R.; Galectin 1 proangiogenic and promigratory effects in the Hs683 oligodendroglioma model are partly mediated through the control of BEX2 expression. Neoplasia 2009,11(5),485-496

Rorive S.; Belot N.; Decaestecker C.; Lefranc F.; Gordower L.; Micik S.; Maurage C-A.; Kaltner H.; Ruchoux M-M.; Danguy A.; Gabius H.J.; Salmon I.; Kiss R.; Camby I.; Galectin-1 is highly expressed in human gliomas with relevance for modulation of invasion of tumor astrocytes into the brain parenchyma. Glia 2001,33(3),241-255

Hancq S.; Salmon I.; Brotchi J.; Gabius H.J.; Heizmann C.W.; Kiss R.; Decaestecker C.; Detection of S100B, S100A6 and galectin-3 ligands in meningiomas as markers of aggressiveness. Int J Oncol 2004,25(5),1233-1240

Moiseeva E.P.; Williams B.; Goodall A.H.; Samani N.J.; Galectin-1 interacts with β-1 subunit of integrin. Biochem Biophys Res Commun 2003,310(3),1010-1016

Fortin S.; Le Mercier M.; Camby I.; Spiegl-Kreinecker S.; Berger W.; Lefranc F.; Kiss R.; Galectin-1 is implicated in the protein kinase C ε/vimentin-controlled trafficking of integrin-β1 in glioblastoma cells. Brain Pathol 2010,20(1),39-49

Strik H.M.; Kolodziej M.; Oertel W.; Basecke J.; Glycobiology in malignant gliomas: expression and functions of galectins and possible therapeutic options. Curr Pharm Biotechnol 2012,13(11),2299-2307

Binh N.H.; Satoh K.; Kobayashi K.; Takamatsu M.; Hatano Y.; Hirata A.; Tomita H.; Kuno T.; Hara A.; Galectin-3 in preneoplastic lesions of glioma. J Neurooncol 2013,111(2),123-132

Balan V.; Nangia-Makker P.; Raz A.; Galectins as cancer biomarkers. Cancers (Basel) 2010,2(2),592-610

Bailey L.A.; Jamshidi-Parsian A.; Patel T.; Koonce N.A.; Diekman A.B.; Cifarelli C.P.; Marples B.; Griffin R.J.; Combined temozolomide and ionizing radiation induces galectin-1 and galectin-3 expression in a model of human glioma. Tumor Microenviron Ther 2015,2,19-31

Danhier F.; Messaoudi K.; Lemaire L.; Benoit J.P.; Lagarce F.; Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: in vivo evaluation. Int J Pharm 2015,481(1-2),154-161

Wu R.; Wu T.; Wang K.; Luo S.; Chen Z.; Fan M.; Xue D.; Lu H.; Zhuang Q.; Xu X.; Prognostic significance of galectin-1 expression in patients with cancer: a meta-analysis. Cancer Cell Int 2018,18,108

Ribeiro A.C.; Ferreira R.; Freitas R.; Plant Lectins: Bioactivities and Bioapplications. Studies in Natural Products Chemistry 2018,Vol. 58,1-42

Dan X.; Liu W.; Ng T.B.; Development and applications of lectins as biological tools in biomedical research. Med Res Rev 2016,36(2),221-247

Levy S.L.; White J.J.; Lackey E.P.; Schwartz L.; Sillitoe R.V.; WGA-Alexa conjugates for axonal tracing. Curr Protoc Neurosci 2017,79,1-28, 24

Hirabayashi J.; Yamada M.; Kuno A.; Tateno H.; Lectin microarrays: concept, principle and applications. Chem Soc Rev 2013,42(10),4443-4458

Hendrickson O.D.; Zherdev A.V.; Analytical application of lectins. Crit Rev Anal Chem 2018,48(4),279-292

Laaf D.; Bojarová P.; Elling L.; Křen V.; Galectin-carbohydrate interactions in biomedicine and biotechnology. Trends Biotechnol 2019,37(4),402-415

Wada J.; Makino H.; Galectins, galactoside-binding mammalian lectins: clinical application of multi-functional proteins. Acta Med Okayama 2001,55(1),11-17

Thijssen V.L.; Heusschen R.; Caers J.; Griffioen A.W.; Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim Biophys Acta 2015,1855(2),235-247

Dong R.; Zhang M.; Hu Q.; Zheng S.; Soh A.; Zheng Y.; Yuan H.; Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int J Mol Med 2018,41(2),599-614

Hayashi Y.; Jia W.; Kidoya H.; Muramatsu F.; Tsukada Y.; Takakura N.; Galectin-3 inhibits cancer metastasis by negatively regulating integrin β3 expression. Am J Pathol 2019,189(4),900-910

Girard A.; Magnani J.L.; Clinical trials and applications of galectin antagonists. Trends Glycosci Glyc 2018,30,SE211-SE220

Dings R.P.; Miller M.C.; Nesmelova I.; Astorgues-Xerri L.; Kumar N.; Serova M.; Chen X.; Raymond E.; Hoye T.R.; Mayo K.H.; Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding. J Med Chem 2012,55(11),5121-5129

Hirani N.; Nicol L.; MacKinnon A.C.; Ford P.; Schambye H.; Nilsson U.; Leffler H.; Thomas T.; Knott O.; Gibbons M.; Simpson J.; Maher, T. TD139, a novel inhaled galectin-3 inhibitor for the treatment of idiopathic pulmonary fibrosis (IPF). results from the first in (IPF) patients study. QJM-. Int J Med (Dubai) 2016,109,S16-S16

Stegmayr J.; Lepur A.; Kahl-Knutson B.; Aguilar-Moncayo M.; Klyosov A.A.; Field R.A.; Oredsson S.; Nilsson U.J.; Leffler H.; Low or no inhibitory potency of the canonical galectin carbohydrate-binding site by pectins and galactomannans. J Biol Chem 2016,291(25),13318-13334

Floyd R.A.; Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 1999,222(3),236-245

Vila M.; Przedborski S.; Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 2003,4(5),365-375

Urdinguio R.G.; Sanchez-Mut J.V.; Esteller M.; Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 2009,8(11),1056-1072

Borsook D.; Neurological diseases and pain. Brain 2012,135(Pt 2),320-344

Saraiva C.; Praça C.; Ferreira R.; Santos T.; Ferreira L.; Bernardino L.; Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 2016,235,34-47