Angiosperm phylogeny: 17 genes, 640 taxa

American Journal of Botany - Tập 98 Số 4 - Trang 704-730 - 2011
Pamela S. Soltis1, Stephen A. Smith2, Nico Cellinese3, Kenneth J. Wurdack4, David C. Tank5, Samuel F. Brockington6, Nancy Refulio7, Jay B. Walker8, Michael J. Moore9, Barbara S. Carlsward10, Charles D. Bell11, Maribeth Latvis1,3, Sunny Crawley12, Chelsea M. Black12, Diaga Diouf12,13, Zhenxiang Xi14, Catherine A. Rushworth14, Matthew A. Gitzendanner1,3, Kenneth J. Sytsma8, Yushan Qiu15, Khidir W. Hilu12, Charles C. Davis14, Michael J. Sanderson16, Reed S. Beaman3, Richard G. Olmstead7, Walter S. Judd1, Michael J. Donoghue17
1Department of Biology, University of Florida, Gainesville, Florida 32611-8525 USA
2Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA
3Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611-7800, USA
4Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013-7012, USA
5Department of Forest Ecology and Biogeosciences & Stillinger Herbarium, University of Idaho, P. O. Box 441133, Moscow, Idaho 83844-1133 USA
6Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
7Department of Biology, University of Washington, Seattle, Washington 98195-5325 USA
8Department of Botany University of Wisconsin Madison, Wisconsin 53706 USA
9Biology Department, Oberlin College, Oberlin, Ohio 44074-1097 USA
10Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois 61920 USA
11Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148, USA
12Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 USA
13Département de Biologie Végétale, Université Cheikh AntDeara Diop, Dakar–Fann, BP 5005, Republic of Sénégal
14Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge Massachusetts 02138, USA
15Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1048 USA
16Department of Ecology and Evolutionary Biology, University of Arizona, 1041 East Lowell, Tucson, Arizona 85721-0088 USA
17Department of Ecology and Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut 06520-8106 USA

Tóm tắt

Premise of the study: Recent analyses employing up to five genes have provided numerous insights into angiosperm phylogeny, but many relationships have remained unresolved or poorly supported. In the hope of improving our understanding of angiosperm phylogeny, we expanded sampling of taxa and genes beyond previous analyses.

Methods: We conducted two primary analyses based on 640 species representing 330 families. The first included 25260 aligned base pairs (bp) from 17 genes (representing all three plant genomes, i.e., nucleus, plastid, and mitochondrion). The second included 19846 aligned bp from 13 genes (representing only the nucleus and plastid).

Key results: Many important questions of deep‐level relationships in the nonmonocot angiosperms have now been resolved with strong support. Amborellaceae, Nymphaeales, and Austrobaileyales are successive sisters to the remaining angiosperms (Mesangiospermae), which are resolved into Chloranthales + Magnoliidae as sister to Monocotyledoneae + [Ceratophyllaceae + Eudicotyledoneae]. Eudicotyledoneae contains a basal grade subtending Gunneridae. Within Gunneridae, Gunnerales are sister to the remainder (Pentapetalae), which comprises (1) Superrosidae, consisting of Rosidae (including Vitaceae) and Saxifragales; and (2) Superasteridae, comprising Berberidopsidales, Santalales, Caryophyllales, Asteridae, and, based on this study, Dilleniaceae (although other recent analyses disagree with this placement). Within the major subclades of Pentapetalae, most deep‐level relationships are resolved with strong support.

Conclusions: Our analyses confirm that with large amounts of sequence data, most deep‐level relationships within the angiosperms can be resolved. We anticipate that this well‐resolved angiosperm tree will be of broad utility for many areas of biology, including physiology, ecology, paleobiology, and genomics.

Từ khóa


Tài liệu tham khảo

10.2307/1223707

10.2307/2656928

10.1111/j.1095-8339.2009.00996.x

Applequist W. L., 2001, Phylogeny of the portulacaceous cohort based on ndhF sequence data, Systematic Botany, 26, 406

10.2307/2657003

10.1111/j.1095-8339.2007.00723.x

10.1186/1471-2148-7-248

10.1111/j.1095-8339.1999.tb00505.x

Beaman R. S. andN.Cellinese.2010.TOLKIN: The Tree of Life Knowledge and Information Network. Websitehttp://www.tolkin.org/.

10.1016/j.ympev.2003.07.006

Bell C. D., 2001, Dipsacales phylogeny based on chloroplast DNA sequences, Harvard Papers in Botany, 6, 481

10.3732/ajb.0900346

10.1600/036364409787602348

10.1038/nature01743

10.1093/oxfordjournals.molbev.a025680

10.1016/S1055-7903(02)00240-3

Brockington S. F., 2010, Phylogeny of the Caryophyllales sensu lato: Revisiting hypotheses on pollination biology and perianth differentiation in the Core Caryophyllales, International Journal of Plant Sciences, 171, 185

10.1139/B08-058

10.1186/1471-2148-9-61

10.2307/25065864

10.1002/tax.584003

10.1093/oxfordjournals.molbev.a026334

10.1111/j.1095-8339.2003.00247.x

10.2307/2399846

Chase M. W., 2006, Multigene analyses of monocot relationships: a summary, 63

10.2307/2419432

10.3732/ajb.89.1.132

10.1073/pnas.0308127100

10.2307/3558360

10.1126/science.1135260

10.1086/428296

10.1126/science.1100671

10.1086/376874

Donoghue M. J., 2001, Phylogeny and phylogenetic taxonomy of Dipsacales, with special reference to Sinadoxa and Tetradoxa (Adoxaceae), Harvard Papers in Botany, 6, 459

10.1007/s10592-005-9073-x

10.1086/377064

10.1086/380987

10.1007/s00606-006-0444-7

10.1006/mpev.2000.0828

10.3732/ajb.90.9.1357

10.2307/2412304

10.1111/j.1558-5646.1985.tb00420.x

Felsenstein J.2005.PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author.Department of Genome Sciences University of Washington Seattle Washington USA. Websitehttp://www.phylip.com/.

Frasier C. L., 2009, Evolution and systematics of the angiosperm order Gentianales with an in‐depth focus on Loganiaceae and its species‐rich and toxic genus Strychnos. PhD dissertation

Funk V. A., 2009, Systematics, evolution, and biogeography of Compositae

10.1002/j.1537-2197.1996.tb12769.x

10.3417/2010023

10.1093/molbev/msm176

Graham S. W., 2006, Robust inference of monocot deep phylogeny using an expanded multigene plastid data set, 3

10.1600/0363644041744491

10.3732/ajb.90.12.1758

10.1073/pnas.0709121104

10.1080/10635150801888871

Jiao Y., Phylogenomic analysis reveals ancient genome duplications in seed plant and angiosperm history, Nature

Judd W. S., 2008, Plant systematics: A phylogenetic approach, 3rd ed

10.2307/3558388

10.1046/j.1095-8339.2003.00110.x

10.1093/bib/bbn013

10.1016/j.ympev.2003.07.017

10.2307/2992432

10.1111/j.1463-6409.2005.00168.x

10.1093/molbev/msi191

Li R.‐Q., 2002, Phylogenetic relationships of the “higher” hamamelids based on chloroplast trnL‐F sequences, Acta Botanica Sinica, 44, 1462

Lundberg J., 2001, Phylogenetic studies in the euasterids II with particular reference to Asterales and Escalloniaceae. Ph.D. dissertation

10.1086/374829

Malécot V., 2002, Histoire, classification et phylogénie des Olacaceae Brown (Santalales)

10.1600/036364408783887384

10.2307/2446139

10.1073/pnas.0708072104

Moore M. J., Phylogenetic analysis of the plastid inverted repeat for 244 species: Insights into deeper‐level angiosperm relationships from a long, slowly evolving sequence region, International Journal of Plant Sciences

10.1073/pnas.0907801107

10.2307/2399851

10.1007/s00606-007-0546-x

10.1186/1471-2148-4-40

10.1002/tax.592019

10.1111/j.1096-0031.1999.tb00277.x

10.1002/tax.591021

10.1006/mpev.1999.0769

10.2307/2399768

10.1016/j.ympev.2008.02.011

10.1007/s00606-007-0539-9

10.1007/s006060200012

10.1086/431800

10.1038/46536

10.1111/j.1759-6831.2010.00097.x

10.2307/2656778

10.2307/2419660

10.2307/2446366

10.3732/ajb.94.7.1073

10.3732/ajb.1000354

10.1038/nature05612

10.1186/1471-2148-10-155

10.1046/j.1095-8339.2003.00171.x

10.1093/sysbio/49.2.306

10.2307/4115644

10.1086/427198

10.1098/rstb.2009.0247

Sikes D. S. andP. O.Lewis.2001. PAUPRat: A tool to implement parsimony and likelihood ratchet searches using PAUP* [online computer program]. Websitehttp://www.ucalgary.ca/∼dsikes/software2.htm.

10.2307/2657021

10.1006/mpev.2001.0937

10.1186/1471-2148-9-37

10.1093/bioinformatics/btm619

10.1086/509788

10.2307/2446027

10.1038/46528

10.1111/j.1095-8339.2000.tb01588.x

10.1002/j.1537-2197.1991.tb14517.x

Soltis D. E., 2005, Phylogeny and evolution of the angiosperms

10.2307/2399952

10.1093/bioinformatics/btl446

10.1080/10635150802429642

10.1016/j.aml.2009.08.009

Stevens P. F.2001onward. Angiosperm Phylogeny Website version 9 June 2008 [and more or less continuously updated since]. Websitehttp://www.mobot.org/MOBOT/research/APweb/.

Swofford D. L., 2002, PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4b10

Sytsma K. J., 1994, DNA extraction from recalcitrant plants: Long, pure, and simple?, 69

10.1086/421066

10.3732/ajb.89.9.1531

10.1080/10635150701472164

10.1600/036364410791638306

10.1086/595288

10.1073/pnas.0813376106

10.1016/j.ppees.2009.01.001

10.2307/25065948

10.3732/ajb.91.11.1846

10.3732/ajb.0800207

10.1073/pnas.092136399

10.1086/376882

10.1600/036364406775971778

10.1016/j.ympev.2005.10.002

10.1016/S1055-7903(02)00303-2

10.1186/1471-2148-7-217