Androgenetic alopecia: a review

Endocrine - Tập 57 Số 1 - Trang 9-17 - 2017
Francesca Lolli1, Francesco Pallotti1, Alfredo Rossi2, Maria Caterina Fortuna2, Gemma Caro2, Andrea Lenzi1, Andrea Sansone1, Francesco Lombardo1
1Department of Experimental Medicine, University of Rome “La Sapienza,” Rome, Italy
2Department of Internal Medicine and Medical Specialties, University of Rome “La Sapienza”, Rome, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

J.B. Hamilton, Patterned loss of hair in man; types and incidence. Ann. N. Y. Acad. Sci. 53, 708–728 (1951)

L. Yip, S. Zaloumis, D. Irwin, G. Severi, J. Hopper, G. Giles, S. Harrap, R. Sinclair, J. Ellis, Gene-wide association study between the aromatase gene (CYP19A1) and female pattern hair loss. Br. J. Dermatol. 161, 289–294 (2009)

G. Severi, R. Sinclair, J.L. Hopper, D.R. English, M.R.E. McCredie, P. Boyle, G.G. Giles, Androgenetic alopecia in men aged 40–69 years: prevalence and risk factors. Br. J. Dermatol. 149, 1207–1213 (2003)

N. Otberg, A.M. Finner, J. Shapiro, Androgenetic alopecia. Endocrinol. Metab. Clin. N. Am. 36, 379–398 (2007)

R. Paus, G. Cotsarelis, The biology of hair follicles. N. Engl. J. Med. 341, 491–497 (1999)

C. Pierard-Franchimont, G.E. Pierard, Teloptosis, a turning point in hair shedding biorhythms. Dermatology 203, 115–117 (2001)

W.C. Chumlea, T. Rhodes, C.J. Girman, A. Johnson-Levonas, F.R.W. Lilly, R. Wu, S.S. Guo, Family history and risk of hair loss. Dermatology 209, 33–39 (2004)

D. Osborn, Inheritance of baldness. Various patterns due to heredity and sometimes present at birth—a sex-limited character-dominant in man–women not bald unless they inherit tendency from both parents. J. Hered. 7, 347–355 (1916)

W. Kuster, R. Happle, The inheritance of common baldness: two B or not two B ? J. Am. Acad. Dermatol. 11, 921–926 (1984)

E. Levy-Nissenbaum, M. Bar-Natan, M. Frydman, E. Pras, Confirmation of the association between male pattern baldness and the androgen receptor gene. Eur. J. Dermatol. 15, 339–340 (2005)

C.C. Zouboulis, K. Degitz, Androgen action on human skin—from basic research to clinical significance. Exp. Dermatol. 13, 5–10 (2004)

K.S. Stenn, R. Paus, T. Dutton, B. Sarba, Glucocorticoid effect on hair growth initiation: a reconsideration. Skin Pharmacol. 6, 125–134 (1993)

D. Deplewski, R.L. Rosenfield, Role of hormones in pilosebaceous unit development. Endocr. Rev. 21, 363–392 (2000)

C. Roh, Q. Tao, S. Lyle, Dermal papilla-induced hair differentiation of adult epithelial stem cells from human skin. Physiol. Genom. 19, 207–217 (2004)

C. Blanpain, W.E. Lowry, A. Geoghegan, L. Polak, E. Fuchs, Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004)

V. Randall, in Hair and its Disorders: Biology, Pathology and Management, ed. By F. Camacho, V.A. Randall, P.V. The biology of androgenetic alopecia (Martin Dunitz, London, 2000), pp. 123–136

A.J. Reynolds, R.F. Oliver, C.A. Jahoda, Dermal cell populations show variable competence in epidermal cell support: stimulatory effects of hair papilla cells. J. Cell Sci. 98(Pt 1), 75–83 (1991)

N.A. Hibberts, A.E. Howell, V.A. Randall, Balding hair follicle dermal papilla cells contain higher levels of androgen receptors than those from non-balding scalp. J. Endocrinol. 156, 59–65 (1998)

V.A. Botchkarev, J. Kishimoto, Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. in Journal of Investigative Dermatology Symposium Proceedings. pp 46–55 (2003)

V.A. Randall, M.J. Thornton, A.G. Messenger, Cultured dermal papilla cells from androgen-dependent human hair follicles (e.g. beard) contain more androgen receptors than those from non-balding areas of scalp. J. Endocrinol. 133, 141–147 (1992)

S. Itami, S. Kurata, S. Takayasu, Androgen induction of follicular epithelial cell growth is mediated via insulin-like growth factor-I from dermal papilla cells. Biochem. Biophys. Res. Commun. 212, 988–994 (1995)

S. Inui, Y. Fukuzato, T. Nakajima, K. Yoshikawa, S. Itami, Identification of androgen-inducible TGF-beta1 derived from dermal papilla cells as a key mediator in Androgenetic alopecia. J Investig. Dermatol. Symp. Proc. 8, 69–71 (2003)

M. Philpott, in Hair and its Disorders: Biology, Research and Management. ed. By F. Camacho, lV. Randal, V. Price. The roles of growth factors in hair follicles: investigations using cultured hair follicles (Martin Dunitz, London, 2001) pp. 103–113

R.D. Sinclair, Male androgenetic alopecia (Part II). J. Men’s Health Gend. 2, 38–44 (2005)

S. Inui, Y. Fukuzato, T. Nakajima, K. Yoshikawa, S. Itami, Androgen-inducible TGF-beta1 from balding dermal papilla cells inhibits epithelial cell growth: a clue to understand paradoxical effects of androgen on human hair growth. FASEB J. 16, 1967–1969 (2002)

S. Inui, S. Itami, Molecular basis of androgenetic alopecia: from androgen to paracrine mediators through dermal papilla. J. Dermatol. Sci. 61, 1–6 (2011)

T. Hibino, T. Nishiyama, Role of TGF-beta2 in the human hair cycle. J. Dermatol. Sci. 35, 9–18 (2004)

M.H. Kwack, Y.K. Sung, E.J. Chung, S.U. Im, J.S. Ahn, M.K. Kim, J.C. Kim, Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J. Invest. Dermatol. 128, 262–269 (2008)

M.H. Kwack, J.S. Ahn, M.K. Kim, J.C. Kim, Y.K. Sung, Dihydrotestosterone-inducible IL-6 inhibits elongation of human hair shafts by suppressing matrix cell proliferation and promotes regression of hair follicles in mice. J. Invest. Dermatol. 132, 43–49 (2012)

V. Poor, S. Juricskay, E. Telegdy, Urinary steroids in men with male-pattern alopecia. J. Biochem. Biophys. Methods 53, 123–130 (2002)

C.C. Zouboulis, The human skin as a hormone target and an endocrine gland. Hormones 3, 9–26 (2004)

M. Fritsch, C.E. Orfanos, C.C. Zouboulis, Sebocytes are the key regulators of androgen homeostasis in human skin. J. Invest. Dermatol. 116, 793–800 (2001)

L. Di Luigi, F. Romanelli, A. Lenzi, Androgenic-anabolic steroids abuse in males. J. Endocrinol. Invest. 28, 81–84 (2005)

S. Inui, S. Itami, Androgen actions on the human hair follicle: perspectives. Exp. Dermatol. 22, 168–171 (2013)

R. Hoffmann, Enzymology of the hair follicle. Eur. J. Dermatol. 11, 296–300 (2001)

U. Hoppe, P.-M. Holterhus, L. Wunsch, D. Jocham, T. Drechsler, S. Thiele, C. Marschke, O. Hiort, Tissue-specific transcription profiles of sex steroid biosynthesis enzymes and the androgen receptor. J. Mol. Med. 84, 651–659 (2006)

D. Thiboutot, P. Martin, L. Volikos, K. Gilliland, Oxidative activity of the type 2 isozyme of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) predominates in human sebaceous glands. J. Invest. Dermatol. 111, 390–395 (1998)

S. Takayasu, Metabolism and action of androgen in the skin. Int. J. Dermatol. 18, 681–692 (1979)

D.W. Russell, D.M. Berman, J.T. Bryant, K.M. Cala, D.L. Davis, C.P. Landrum, J.S. Prihoda, R.I. Silver, A.E. Thigpen, W.C. Wigley, The molecular genetics of steroid 5 alpha-reductases. Recent Prog. Horm. Res. 49, 275–284 (1994)

S. Nakanishi, I. Adachi, K. Takayasu. in Hair Research for the Next Millennium. ed. By D. Neste. Expression of androgen receptor, type I and type II 5a-reductase in human dermal papilla cellse (VREPB, Amsterdam, 1996) pp 333–337

Y. Asada, T. Sonoda, M. Ojiro, S. Kurata, T. Sato, T. Ezaki, S. Takayasu, 5 alpha-reductase type 2 is constitutively expressed in the dermal papilla and connective tissue sheath of the hair follicle in vivo but not during culture in vitro. J. Clin. Endocrinol. Metab. 86, 2875–2880 (2001)

M.E. Sawaya, V.H. Price, Different levels of 5alpha-reductase type I and II, aromatase, and androgen receptor in hair follicles of women and men with androgenetic alopecia. J. Invest. Dermatol. 109, 296–300 (1997)

M.E. Sawaya, N.S. Penneys, Immunohistochemical distribution of aromatase and 3B-hydroxysteroid dehydrogenase in human hair follicle and sebaceous gland. J. Cutan. Pathol. 19, 309–314 (1992)

U. Ohnemus, M. Uenalan, J. Inzunza, J.-A. Gustafsson, R. Paus, The hair follicle as an estrogen target and source. Endocr. Rev. 27, 677–706 (2006)

V.A. Randall, Role of 5α-reductase in health and disease, Baillière’s Clinical Endocrinology and Metabolism. 8(2), 405–431 (1994). doi: 10.1016/S0950-351X(05)80259-9 .

D. Gianfrilli, S. Pierotti, R. Pofi, C. Leonardo, M. Ciccariello, F. Barbagallo, Sex steroid metabolism in benign and malignant intact prostate biopsies: individual profiling of prostate intracrinology. Biomed. Res. Int. 2014, 464869 (2014)

M.J. McPhaul, Androgen receptor mutations and androgen insensitivity. Mol. Cell. Endocrinol. 198, 61–67 (2002)

J.D. Wilson, J.E. Griffin, D.W. Russell, Steroid 5 alpha-reductase 2 deficiency. Endocr. Rev. 14, 577–593 (1993)

T. Liang, S. Hoyer, R. Yu, K. Soltani, A.L. Lorincz, R.A. Hiipakka, S. Liao, Immunocytochemical localization of androgen receptors in human skin using monoclonal antibodies against the androgen receptor. J. Invest. Dermatol. 100, 663–666 (1993)

T. Tadokoro, S. Itami, K. Hosokawa, H. Terashi, S. Takayasu, Human genital melanocytes as androgen target cells. J. Invest. Dermatol. 109, 513–517 (1997)

S. Itami, S. Kurata, T. Sonoda, S. Takayasu, Interaction between dermal papilla cells and follicular epithelial cells in vitro: effect of androgen. Br. J. Dermatol. 132, 527–532 (1995)

S. Inui, S. Itami, H.J. Pan, C. Chang, Lack of androgen receptor transcriptional activity in human keratinocytes. J. Dermatol. Sci. 23, 87–92 (2000)

J.E. Cobb, N.C. Wong, L.W. Yip, J. Martinick, R. Bosnich, R.D. Sinclair, J.M. Craig, R. Saffery, S.B. Harrap, J.A. Ellis, Evidence of increased DNA methylation of the androgen receptor gene in occipital hair follicles from men with androgenetic alopecia. Br. J. Dermatol. 165, 210–213 (2011)

N. Fujimoto, S. Yeh, H.Y. Kang, S. Inui, H.C. Chang, A. Mizokami, C. Chang, Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J. Biol. Chem. 274, 8316–8321 (1999)

S. Inui, Y. Fukuzato, T. Nakajima, S. Kurata, S. Itami, Androgen receptor co-activator Hic-5/ARA55 as a molecular regulator of androgen sensitivity in dermal papilla cells of human hair follicles. J. Invest. Dermatol. 127, 2302–2306 (2007)

S. Itami, S. Kurata, S. Takayasu, 5 Alpha-reductase activity in cultured human dermal papilla cells from beard compared with reticular dermal fibroblasts. J. Invest. Dermatol. 94, 150–152 (1990)

S. Itami, S. Kurata, T. Sonoda, S. Takayasu, Characterization of 5 alpha-reductase in cultured human dermal papilla cells from beard and occipital scalp hair. J. Invest. Dermatol. 96, 57–60 (1991)

P. Lee, C.-C. Zhu, N.S. Sadick, A.H. Diwan, P.S. Zhang, J.S. Liu, V.G. Prieto, Expression of androgen receptor coactivator ARA70/ELE1 in androgenic alopecia. J. Cutan. Pathol. 32, 567–571 (2005)

M.E. Sawaya, A.R. Shalita, Androgen receptor polymorphisms (CAG repeat lengths) in androgenetic alopecia, hirsutism, and acne. J. Cutan. Med. Surg. 3, 9–15 (1998)

A.M. Hillmer, S. Hanneken, S. Ritzmann, T. Becker, J. Freudenberg, F.F. Brockschmidt, A. Flaquer, Y. Freudenberg-Hua, R.A. Jamra, C. Metzen, U. Heyn, N. Schweiger, R.C. Betz, B. Blaumeiser, J. Hampe, S. Schreiber, T.G. Schulze, H.C. Hennies, J. Schumacher, P. Propping, T. Ruzicka, S. Cichon, T.F. Wienker, R. Kruse, M.M. Nothen, Genetic variation in the human androgen receptor gene is the major determinant of common early-onset androgenetic alopecia. Am. J. Hum. Genet. 77, 140–148 (2005)

J.A. Ellis, M. Stebbing, S.B. Harrap, Polymorphism of the androgen receptor gene is associated with male pattern baldness. J. Invest. Dermatol. 116, 452–455 (2001)

J.A. Ellis, K.J. Scurrah, J.E. Cobb, S.G. Zaloumis, A.E. Duncan, S.B. Harrap, Baldness and the androgen receptor: the AR polyglycine repeat polymorphism does not confer susceptibility to androgenetic alopecia. Hum. Genet. 121, 451–457 (2007)

V.M. Hayes, G. Severi, Sa Eggleton, E.J.D. Padilla, M.C. Southey, R.L. Sutherland, J.L. Hopper, G.G. Giles, Short communication the E211 G > a androgen receptor polymorphism is associated with a decreased risk of metastatic prostate cancer and androgenetic alopecia. Cancer Epidemiol. 14, 993–996 (2005)

J.E. Cobb, S.J. White, S.B. Harrap, J.A. Ellis, Androgen receptor copy number variation and androgenetic alopecia: a case-control study. PLoS One 4, e5081 (2009)

D.A. Prodi, N. Pirastu, G. Maninchedda, A. Sassu, A. Picciau, M.A. Palmas, A. Mossa, I. Persico, M. Adamo, A. Angius, M. Pirastu, EDA2R is associated with androgenetic alopecia. J. Invest. Dermatol. 128, 2268–2270 (2008)

A.M. Hillmer, J. Freudenberg, S. Myles, S. Herms, K. Tang, D.A. Hughes, F.F. Brockschmidt, Y. Ruan, M. Stoneking, M.M. Nöthen, Recent positive selection of a human androgen receptor/ectodysplasin A2 receptor haplotype and its relationship to male pattern baldness. Hum. Genet. 126, 255 (2009)

F.F. Brockschmidt, A.M. Hillmer, S. Eigelshoven, S. Hanneken, S. Heilmann, S. Barth, C. Herold, T. Becker, R. Kruse, M.M. Nöthen, Fine mapping of the human AR/EDA2R locus in androgenetic alopecia. Br. J. Dermatol. 162, 899–903 (2010)

J.A. Ellis, M. Stebbing, S.B. Harrap, Genetic analysis of male pattern baldness and the 5alpha-reductase genes. J. Invest. Dermatol. 110, 849–853 (1998)

J.B. Richards, X. Yuan, F. Geller, D. Waterworth, V. Bataille, D. Glass, K. Song, G. Waeber, P. Vollenweider, K.K.H. Aben, L.A. Kiemeney, B. Walters, N. Soranzo, U. Thorsteinsdottir, A. Kong, T. Rafnar, P. Deloukas, P. Sulem, H. Stefansson, K. Stefansson, T.D. Spector, V. Mooser, Male-pattern baldness susceptibility locus at 20p11. Nat. Genet. 40, 1282–1284 (2008)

F.F. Brockschmidt, S. Heilmann, J.A. Ellis, S. Eigelshoven, S. Hanneken, C. Herold, S. Moebus, M.A. Alblas, B. Lippke, N. Kluck, L. Priebe, F.A. Degenhardt, R.A. Jamra, C. Meesters, K.H. Jöckel, R. Erbel, S. Harrap, J. Schumacher, H. Fröhlich, R. Kruse, A.M. Hillmer, T. Becker, M.M. Nöthen, Susceptibility variants on chromosome 7p21.1 suggest HDAC9 as a new candidate gene for male-pattern baldness. Br. J. Dermatol. 165, 1293–1302 (2011)

A.M. Hillmer, F.F. Brockschmidt, S. Hanneken, S. Eigelshoven, M. Steffens, A. Flaquer, S. Herms, T. Becker, A.-K. Kortüm, D.R. Nyholt, Z.Z. Zhao, G.W. Montgomery, N.G. Martin, T.W. Mühleisen, M.A. Alblas, S. Moebus, K.-H. Jöckel, M. Bröcker-Preuss, R. Erbel, R. Reinartz, R.C. Betz, S. Cichon, P. Propping, M.P. Baur, T.F. Wienker, R. Kruse, M.M. Nöthen, Susceptibility variants for male-pattern baldness on chromosome 20p11. Nat. Genet. 40, 1279–1281 (2008)

D.R. Chesire, W.B. Isaacs, Ligand-dependent inhibition of beta-catenin/TCF signaling by androgen receptor. Oncogene 21, 8453–8469 (2002)

R. Li, F.F. Brockschmidt, A.K. Kiefer, H. Stefansson, D.R. Nyholt, K. Song, S.H. Vermeulen, S. Kanoni, D. Glass, S.E. Medland, M. Dimitriou, D. Waterworth, J.Y. Tung, F. Geller, S. Heilmann, A.M. Hillmer, V. Bataille, S. Eigelshoven, S. Hanneken, S. Moebus, C. Herold, M. den Heijer, G.W. Montgomery, P. Deloukas, N. Eriksson, A.C. Heath, T. Becker, P. Sulem, M. Mangino, P. Vollenweider, T.D. Spector, G. Dedoussis, N.G. Martin, L.A. Kiemeney, V. Mooser, K. Stefansson, D.A. Hinds, M.M. Nöthen, J.B. Richards, Six novel susceptibility loci for early-onset androgenetic alopecia and their unexpected association with common diseases. PLoS Genet. 8, e1002746 (2012)

T. Kitagawa, K.I. Matsuda, S. Inui, H. Takenaka, N. Katoh, S. Itami, S. Kishimoto, M. Kawata, Keratinocyte growth inhibition through the modification of wnt signaling by androgen in balding dermal papilla cells. J. Clin. Endocrinol. Metab. 94, 1288–1294 (2009)

G.J. Leirõs, A.I. Attorresi, M.E. Balañá, Hair follicle stem cell differentiation is inhibited through cross-talk between Wnt/β-catenin and androgen signalling in dermal papilla cells from patients with androgenetic alopecia. Br. J. Dermatol. 166, 1035–1042 (2012)

J.S. Crabtree, E.J. Kilbourne, B.J. Peano, S. Chippari, T. Kenney, C. McNally, W. Wang, H.A. Harris, R.C. Winneker, S. Nagpal, C.C. Thompson, A mouse model of androgenetic alopecia. Endocrinology 151, 2373–2380 (2010)

F. Yang, X. Li, M. Sharma, C.Y. Sasaki, D.L. Longo, B. Lim, Z. Sun, Linking beta-catenin to androgen-signaling pathway. J. Biol. Chem. 277, 11336–11344 (2002)

J. Kishimoto, R.E. Burgeson, B.A. Morgan, Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 14, 1181–1185 (2000)

C. Lo Celso, D.M. Prowse, F.M. Watt, Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131, 1787–1799 (2004)

D. Van Mater, F.T. Kolligs, A.A. Dlugosz, E.R. Fearon, Transient activation of beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev. 17, 1219–1224 (2003)

T. Andl, S.T. Reddy, T. Gaddapara, S.E. Millar, WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643–653 (2002)

A.A. Mills, B. Zheng, X.J. Wang, H. Vogel, D.R. Roop, A. Bradley, p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999)

M. Sosnova, M. Bradl, J.V. Forrester, CD34+ corneal stromal cells are bone marrow-derived and express hemopoietic stem cell markers. Stem Cells 23, 507–515 (2005)

L.A. Garza, Y. Liu, Z. Yang, B. Alagesan, J.A. Lawson, S.M. Norberg, D.E. Loy, T. Zhao, H.B. Blatt, D.C. Stanton, L. Carrasco, G. Ahluwalia, S.M. Fischer, G.A. FitzGerald, G. Cotsarelis, Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia 4, 126ra34 (2012).

S. Heilmann, D.R. Nyholt, F.F. Brockschmidt, A.M. Hillmer, C. Herold, T. Becker, N.G. Martin, M.M. Nöthen, No genetic support for a contribution of prostaglandins to the aetiology of androgenetic alopecia. Br. J. Dermatol. 169, 222–224 (2013)

A.W. Bahta, N. Farjo, B. Farjo, M.P. Philpott, Premature senescence of balding dermal papilla cells in vitro is associated with p16(INK4a) expression. J. Invest. Dermatol. 128, 1088–1094 (2008)

Q.M. Chen, Replicative senescence and oxidant-induced premature senescence. Beyond the control of cell cycle checkpoints. Ann. N. Y. Acad. Sci. 908, 111–125 (2000)

J.H. Upton, R.F. Hannen, A.W. Bahta, N. Farjo, B. Farjo, M.P. Philpott, Oxidative stress–associated senescence in dermal papilla cells of men with androgenetic alopecia. J. Investig. Dermatol. Adv. Online Publ. 135, 1244–1252 (2015)

M. Bienova, R. Kucerova, M. Fiuraskova, M. Hajduch, Z. Kolar, Androgenetic alopecia and current methods of treatment. Acta. Dermatovenerol. Alp. Pannonica Adriat. 14, 5–8 (2005)

H.S. Shin, C.H. Won, S.H. Lee, O.S. Kwon, K.H. Kim, H.C. Eun, Efficacy of 5% minoxidil versus combined 5% minoxidil and 0.01% tretinoin for male pattern hair loss: a randomized, double-blind, comparative clinical trial. Am. J. Clin. Dermatol. 8, 285–290 (2007)

A.E. Buhl, D.J. Waldon, T.T. Kawabe, J.M. Holland, Minoxidil stimulates mouse vibrissae follicles in organ culture. J. Invest. Dermatol. 92, 315–320 (1989)

A. Blumeyer, A. Tosti, A. Messenger, P. Reygagne, V. Del Marmol, P.I. Spuls, M. Trakatelli, A. Finner, F. Kiesewetter, R. Trüeb, B. Rzany, U. Blume-Peytavi, Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men. JDDG 9, S1–S57 (2011)

E.P. Jenkins, S. Andersson, J. Imperato-McGinley, J.D. Wilson, D.W. Russell, Genetic and pharmacological evidence for more than one human steroid 5 alpha-reductase. J. Clin. Invest. 89, 293–300 (1992)

D.W. Russell, J.D. Wilson, Steroid 5 alpha-reductase: two genes/two enzymes. Annu. Rev. Biochem. 63, 25–61 (1994)

G. Harris, B. Azzolina, W. Baginsky, G. Cimis, G.H. Rasmusson, R.L. Tolman, C.R. Raetz, K. Ellsworth, Identification and selective inhibition of an isozyme of steroid 5 alpha-reductase in human scalp. Proc. Natl Acad. Sci. USA 89, 10787–10791 (1992)

A.E. Thigpen, R.I. Silver, J.M. Guileyardo, M.L. Casey, J.D. McConnell, D.W. Russell, Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression. J. Clin. Invest. 92, 903–910 (1993)

E. Bayne, J. Flanagan, B. Azzolina, R. Einstein, J. Mumford, B. Avala, D. Chang, I. Thiboutot, I. Singer, G. Harris, Immunolocalization of type 2 5a-reductase in human hair follicles [abstract]. in 1997 Annual Meeting Society for Investigative Dermatology. p. 651 (1997)

L. Drake, M. Hordinsky, V. Fiedler, J. Swinehart, W.P. Unger, P.C. Cotterill, D.M. Thiboutot, N. Lowe, C. Jacobson, D. Whiting, S. Stieglitz, S.J. Kraus, E.I. Griffin, D. Weiss, P. Carrington, C. Gencheff, G.W. Cole, D.M. Pariser, E.S. Epstein, W. Tanaka, A. Dallob, K. Vandormael, L. Geissler, J. Waldstreicher, The effects of finasteride on scalp skin and serum androgen levels in men with androgenetic alopecia. J. Am. Acad. Dermatol. 41, 550–554 (1999)

M. Caserini, M. Radicioni, C. Leuratti, E. Terragni, M. Iorizzo, R. Palmieri, Effects of a novel finasteride 0.25% topical solution on scalp and serum dihydrotestosterone in healthy men with androgenetic alopecia. Int. J. Clin. Pharmacol. Ther. 54, 19–27 (2016)

M. Caserini, M. Radicioni, C. Leuratti, O. Annoni, R. Palmieri, A novel finasteride 0.25% topical solution for androgenetic alopecia: pharmacokinetics and effects on plasma androgen levels in healthy male volunteers. Int. J. Clin. Pharmacol. Ther. 52, 842–849 (2014)

B.S. Chandrashekar, T. Nandhini, V. Vasanth, R. Sriram, S. Navale, Topical minoxidil fortified with finasteride: An account of maintenance of hair density after replacing oral finasteride. Indian Dermatol. Online J. 6, 17–20 (2015)

Z. Hajheydari, J. Akbari, M. Saeedi, L. Shokoohi, Comparing the therapeutic effects of finasteride gel and tablet in treatment of the androgenetic alopecia. Indian J. Dermatol. Venereol. Leprol. 75, 47–51 (2009)

C. Tanglertsampan, Efficacy and safety of 3% minoxidil versus combined 3% minoxidil / 0.1% finasteride in male pattern hair loss: a randomized, double-blind, comparative study. J. Med. Assoc. Thail. 95, 1312–1316 (2012)

S. Khandpur, M. Suman, B.S. Reddy, Comparative efficacy of various treatment regimens for androgenetic alopecia in men. J. Dermatol. 29, 489–498 (2002)

A.R. Diani, M.J. Mulholland, K.L. Shull, M.F. Kubicek, G.A. Johnson, H.J. Schostarez, M.N. Brunden, A.E. Buhl, Hair growth effects of oral administration of finasteride, a steroid 5α-reductase inhibitor, alone and in combination with topical minoxidil in the balding stumptail macaque. J. Clin. Endocrinol. Metab. 74, 345–350 (1992)

A. Rossi, C. Cantisani, M. Scarno, A. Trucchia, M.C. Fortuna, S. Calvieri, Finasteride, 1 mg daily administration on male androgenetic alopecia in different age groups: 10-year follow-up. Dermatol. Ther. 24, 455–461 (2011)

J.W. Overstreet, V.L. Fuh, J. Gould, S.S. Howards, M.M. Lieber, W. Hellstrom, S. Shapiro, P. Carroll, R.S. Corfman, S. Petrou, R. Lewis, P. Toth, T. Shown, J. Roy, J.P. Jarow, J. Bonilla, C.A. Jacobsen, D.Z. Wang, K.D. Kaufman, Chronic treatment with finasteride daily does not affect spermatogenesis or semen production in young men. J. Urol. 162, 1295–1300 (1999)

A.M. Traish, J. Hassani, A.T. Guay, M. Zitzmann, M.L. Hansen, Adverse side effects of 5α-reductase inhibitors therapy: persistent diminished libido and erectile dysfunction and depression in a subset of patients. J. Sex. Med. 8, 872–884 (2011)

M.S. Irwig, S. Kolukula. Persistent sexual side effects of finasteride for male pattern hair loss. J. Sex. Med. 8, 1747–1753 (2011)

Y. Wu, R.R. Chhipa, H. Zhang, C. Ip, The antiandrogenic effect of finasteride against a mutant androgen receptor. Cancer Biol. Ther. 11, 902–909 (2011)

D.A. Finn, S.L. Long, M.A. Tanchuck, J.C. Crabbe, Interaction of chronic ethanol exposure and finasteride: sex and strain differences. Pharmacol. Biochem. Behav. 78, 435–443 (2004)

B. Stoffel-Wagner, Neurosteroid biosynthesis in the human brain and its clinical implications. Ann. N. Y. Acad. Sci. 1007, 64–78 (2003)

R. Rupprecht, F. Holsboer, Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci. 22, 410–416 (1999)