Ancilla-driven blind quantum computation for clients with different quantum capabilities

EPJ Quantum Technology - Tập 10 Số 1 - 2023
Qunfeng Dai1, Junyu Quan2, Xiaoping Lou3, Qin Li1
1School of Computer Science, Xiangtan University, Xiangtan, China
2School of Mathematics and Computational Science, Xiangtan University, Xiangtan, China
3College of Information Science and Engineering, Hunan Normal University, Changsha, China

Tóm tắt

AbstractBlind quantum computation (BQC) allows a client with limited quantum power to delegate his quantum computational task to a powerful server and still keep his input, output, and algorithm private. There are mainly two kinds of models about BQC, namely circuit-based and measurement-based models. In addition, a hybrid model called ancilla-driven universal blind quantum computation (ADBQC) was proposed by combining the properties of both circuit-based and measurement-based models, where all unitary operations on the register qubits can be realized with the aid of single ancilla coupled to the register qubits. However, in the ADBQC model, the quantum capability of the client is strictly limited to preparing single qubits. If a client can only perform single-qubit measurements or a few simple quantum gates, he will not be able to perform ADBQC. This paper solves the problem and extends the existing model by proposing two types of ADBQC protocols for clients with different quantum capabilities, such as performing single-qubit measurements or single-qubit gates. Furthermore, in the two proposed ADBQC protocols, clients can detect whether servers are honest or not with a high probability by using corresponding verifiable techniques.

Từ khóa


Tài liệu tham khảo

David ED. Quantum computational networks. In: Proceedings of the royal society of London. A. mathematical and physical sciences. 1989. p. 73–90.

Broadbent A. Delegating private quantum computations. Can J Phys. 2015;93(9):941–6.

Zhang X, Weng J, Li X et al.. Single-server blind quantum computation with quantum circuit model. Quantum Inf Process. 2018;17(6):134.

Raussendorf R, Briegel HJ. A one-way quantum computer. Phys Rev Lett. 2001;86(22):5188.

Takeuchi Y, Morimae T, Hayashi M. Quantum computational universality of hypergraph states with Pauli-X and Z basis measurements. Sci Rep. 2019;9(1):13585.

Dunjko V, Kashefi E, Leverrier A. Blind quantum computing with weak coherent pulses. Phys Rev Lett. 2012;108(20):200502.

Morimae T, Fujii K. Blind topological measurement-based quantum computation. Nat Commun. 2012;3(1):1–6.

Tomoyuki T, Fujii K. Blind quantum computation protocol in which Alice only makes measurements. Phys Rev A. 2013;87(5):050301.

Tomoyuki T, Fujii K. Secure entanglement distillation for double-server blind quantum computation. Phys Rev Lett. 2013;111(2):020502.

Li Q, Chan WH, Wu C et al.. Triple-server blind quantum computation using entanglement swapping. Phys Rev A. 2014;89(4):040302.

Sheng YB, Zhou L. Deterministic entanglement distillation for secure double-server blind quantum computation. Sci Rep. 2015;5(1):7815.

Miller J, Miyake A. Hierarchy of universal entanglement in 2D measurement-based quantum computation. npj Quantum Inf. 2016;2(1):16036.

Anders J, Oi DKL, Kashefi E, Browne DE et al.. Ancilla-driven universal quantum computation. Phys Rev A. 2010;82(2):020301.

Proctor TJ, Kendon V. Minimal ancilla mediated quantum computation. EPJ Quantum Technol. 2014;1(1):13.

Jaksch D, Briegel HJ, Cirac JI et al.. Entanglement of atoms via cold controlled collisions. Phys Rev Lett. 1999;82(9):1975.

Majer J, Chow JM, Gambetta JM et al.. Coupling superconducting qubits via a cavity bus. Nature. 2007;449(7161):443–7.

Chou C, Hume DB, Koelemeij JC et al.. Frequency comparison of two high-accuracy al optical clocks. Phys Rev Lett. 2010;104(7):070802.

Yang B, Yang L. Effect on ion-trap quantum computers from the quantum nature of the driving field. Sci China Inf Sci. 2020;63(10):202501.

Xu G, Tong D. Realizing multi-qubit controlled nonadiabatic holonomic gates with connecting systems. AAPPS Bull. 2022;32(1):13.

Lau JWZ, Lim KH, Shrotriya H, Kwek LC. NISQ computing: where are we and where do we go? AAPPS Bull. 2022;32(1):27.

Price AB, Rarity JG, Erven C. A quantum key distribution protocol for rapid denial of service detection. EPJ Quantum Technol. 2020;7(1):8.

Li L, Li J, Yan C et al.. Quantum key distribution based on single-particle and EPR entanglement. Sci China Inf Sci. 2020;63(6):169501.

Li Q, Li Z, Chan WH et al.. Blind quantum computation with identity authentication. Phys Lett A. 2018;382(14):938–41.

Li C, Tian Y, Chen X et al.. An efficient anti-quantum lattice-based blind signature for blockchain-enabled systems. Inf Sci. 2021;546:253–64.

Qin H, Tang WK, Tso R. Hierarchical quantum secret sharing based on special high-dimensional entangled state. IEEE J Sel Top Quantum Electron. 2020;26(3):1–6.

Ju X-X, Zhong W, Sheng Y-B, Zhou L. Measurement-device-independent quantum secret sharing with hyper-encoding. Chin Phys B. 2022;31(10):100302.

Sheng Y-B, Zhou L, Long G-L. One-step quantum secure direct communication. Sci Bull. 2022;67(4):367–74.

Zhou L, Xu B-W, Zhong W, Sheng Y-B. Device-independent quantum secure direct communication with single-photon sources. Phys Rev Appl. 2023;19(1):014036.

Childs AM. Secure assisted quantum computation. Quantum Inf Comput. 2005;5(6):456–66.

Broadbent A, Fitzsimons J, Kashefi E. Universal blind quantum computation. In: Proceedings of the 50th annual IEEE symposium on foundations of computer science. 2009. p. 517–26.

Gheorghiu A, Kashefi E, Wallden P. Robustness and device independence of verifiable blind quantum computing. New J Phys. 2015;17(8):083040.

Hayashi M, Morimae T. Verifiable measurement-only blind quantum computing with stabilizer testing. Phys Rev Lett. 2015;115(22):220502.

Fitzsimons JF, Kashefi E. Unconditionally verifiable blind quantum computation. Phys Rev A. 2017;96(1):012303.

Morimae T. Measurement-only verifiable blind quantum computing with quantum input verification. Phys Rev A. 2016;94(4):042301.

Huang HL, Bao WS, Li T et al.. Universal blind quantum computation for hybrid system. Quantum Inf Process. 2017;16(8):199.

Hayashi M, Hajdušek M. Self-guaranteed measurement-based quantum computation. Phys Rev A. 2018;97(5):052308.

Morimae T. Verification for measurement-only blind quantum computing. Phys Rev A. 2014;89(6):060302.

Takeuchi Y, Morimae T. Verification of many-qubit states. Phys Rev X. 2018;8(2):021060.

Sato G, Koshiba T, Morimae T. Arbitrable blind quantum computation. Quantum Inf Process. 2019;18(12):370.

Shan RT, Chen X, Yuan KG. Multi-party blind quantum computation protocol with mutual authentication in network. Sci China Inf Sci. 2021;64(6):162302.

Zhang X, Luo W, Zeng G et al.. A hybrid universal blind quantum computation. Inf Sci. 2019;498:135–43.

Yang Z, Bai M-Q, Mo Z-W. The brickwork state with fewer qubits in blind quantum computation. Quantum Inf Process. 2022;21(4):125.

Sheng Y-B, Zhou L. Blind quantum computation with a noise channel. Phys Rev A. 2018;98(5):052343.

Li W, Lu S, Deng D-L. Quantum federated learning through blind quantum computing. Sci China, Phys Mech Astron. 2021;64(10):100312.

Barz S, Kashefi E, Broadbent A et al.. Demonstration of blind quantum computing. Science. 2012;335(6066):303–8.

Barz S, Fitzsimons JF, Kashefi E et al.. Experimental verification of quantum computation. Nat Phys. 2013;9(11):727–31.

Li Q, Liu C, Peng Y et al.. Blind quantum computation where a user only performs single-qubit gates. Opt Laser Technol. 2021;142:107190.

Sueki T, Koshiba T, Morimae T. Ancilla-driven universal blind quantum computation. Phys Rev A. 2013;87(6):060301.

Anders J, Andersson E, Browne DE et al.. Ancilla-driven quantum computation with twisted graph states. Theor Comput Sci. 2012;430:51–72.

Khaneja N, Brockett R, Glaser SJ. Time optimal control in spin systems. Phys Rev A. 2001;63(3):032308.

Popescu S, Rohrlich D. Quantum nonlocality as an axiom. Found Phys. 1994;24(3):379–85.