Anchor pruning for object detection
Tài liệu tham khảo
Cai, Z., Vasconcelos, N., 2018. Cascade r-cnn: Delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162.
Cai, L., Zhao, B., Wang, Z., Lin, J., Foo, C.S., Aly, M.S., Chandrasekhar, V., 2019. MaxpoolNMS: getting rid of NMS bottlenecks in two-stage object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9356–9364.
Chen, 2019
Deng, 2020, Model compression and hardware acceleration for neural networks: A comprehensive survey, Proc. IEEE, 108, 485, 10.1109/JPROC.2020.2976475
Everingham, 2010, The pascal visual object classes (voc) challenge, Int. J. Comput. Vis., 88, 303, 10.1007/s11263-009-0275-4
Girshick, R., Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448.
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778.
Hinton, 2015
Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141.
Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., et al., 2017. Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310–7311.
Ke, W., Zhang, T., Huang, Z., Ye, Q., Liu, J., Huang, D., 2020. Multiple Anchor Learning for Visual Object Detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10206–10215.
Law, H., Deng, J., 2018. Cornernet: Detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–750.
Li, 2016
Li, S., Yang, L., Huang, J., Hua, X.-S., Zhang, L., 2019. Dynamic anchor feature selection for single-shot object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6609–6618.
Liao, 2018, Textboxes++: A single-shot oriented scene text detector, IEEE Trans. Image Process., 27, 3676, 10.1109/TIP.2018.2825107
Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017a. Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017b. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988.
Lin, 2014, Microsoft coco: Common objects in context, 740
Liu, 2016, Ssd: Single shot multibox detector, 21
Liu, 2018
Luo, 2016, Understanding the effective receptive field in deep convolutional neural networks, 4898
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788.
Redmon, J., Farhadi, A., 2017. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271.
Redmon, 2018
Ren, 2015, Faster r-cnn: Towards real-time object detection with region proposal networks, 91
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–4520.
Sermanet, 2013
Simonyan, 2014
Tan, M., Pang, R., Le, Q.V., 2020. Efficientdet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790.
Tian, Z., Shen, C., Chen, H., He, T., 2019. Fcos: Fully convolutional one-stage object detection. in: Proceedings of the IEEE International Conference on Computer Vision, pp. 9627–9636.
Verucchi, 2020, A systematic assessment of embedded neural networks for object detection, 937
Wang, J., Chen, K., Yang, S., Loy, C.C., Lin, D., 2019. Region proposal by guided anchoring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2965–2974.
Yang, 2018, Metaanchor: Learning to detect objects with customized anchors, 320
Zhang, 2019, Freeanchor: Learning to match anchors for visual object detection, 147
Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z., 2018. Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4203–4212.
Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z., 2017. S3fd: Single shot scale-invariant face detector. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 192–201.
Zhong, 2020, Anchor box optimization for object detection, 1286
Zhou, 2017
Zhu, 2017