Anatomy, physiology and pharmacology of Caenorhabditis elegans pharynx: a model to define gene function in a simple neural system

Invertebrate Neuroscience - Tập 6 Số 3 - Trang 105-122 - 2006
Christopher J. Franks1, Lindy Holden‐Dye1, Kate Bull1, Sarah Luedtke1, Robert Walker1
1School of Biological Sciences, Bassett Crescent East, University of Southampton, Southampton, SO16 7PX, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Albertson DG, Thomson JN (1976) The pharynx of Caenorhabditis elegans. Phil Trans Roy Soc Lond B 275:299–325

Aptel N, Cook A, Pemberton D, Portillo V, Rogers C, Holden-Dye L, Wolstenholme A (2001) The physiological roles of AVR-14 in C. elegans and the parasite Haemonchus contortus. Intl Worm Meeting Abstr 690

Avery L (1993a) Motor-neuron M3 controls pharyngeal muscle-relaxation timing in Caenorhabditis elegans. J Exp Biol 175:283–297

Avery L (1993b) The genetics of feeding in Caenorhabditis elegans. Genetics 133:897–917

Avery L, Horvitz HR (1987) A cell that dies during wild type Caenorhabditis elegans development can function as a neuron in a ced-3 mutant. Cell 51:1071–1078

Avery L, Horvitz R (1989) Pharyngeal pumping continues after laser killing of the pharyngeal nervous-system of C. elegans. Neuron 3:473–485

Avery L, Horvitz HR (1990) Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. J Exp Zool 253:263–270

Avery L, Shtonda BB (2003) Food transport in the C. elegans pharynx. J Exp Biol 206:2441–2457

Avery L, Thomas JH (1997) Feeding and defecation. In: Riddle DL, Blumenthal T, Meyer BJ, Preiss JR (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 679–716

Avery L, Raizen D, Lockery S (1995) Electrophysiological methods. Meth Cell Biol 48:251–269

Baylis HA, Furuichi T, Yoshikawa F, Mikoshiba K, Sattelle DB (1999) Inositol 1,4,5-triphosphate receptors are strongly expressed in the nervous system, pharynx, intestine, gonad and excretory cell of Caenorhabditis elegans and are encoded by a single gene (itr-1). J Mol Biol 294:467–476

Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

Brockie PJ, Mellem JE, Hills T, Masden DM, Maricq AV (2001) The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 31:617–630

Cambova P, Hubka P, Sulkova I, Hulin I (2003) The pacemaker activity of interstitial cells of Cajal and gastric electrical activity. Physiol Res 52:275–284

Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5:956–974

Chiang JTA, Steciuk M, Shtonda B, Avery L (2006) Evolution of pharyngeal behavior and neuronal function in free-living soil nematodes. J Exp Biol 209:1859–1873

Coates JC, de Bono M (2002) Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans. Nature 419:925–929

Culetto E, Sattelle DB (2000) A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 9:869–877

Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LHT, Schaeffer JM, Arena JP (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371:707–711

Davis MW, Somerville D, Lee RyN, Lockery S, Avery L, Fambrough DM (1995) Mutations in the Caenorhabditis elegans Na,K-ATPase alpha-subunit gene, eat-6, disrupt excitable cell-function. J Neurosci 15:8408–8418

Davis MW, Fleischauer R, Dent JA, Joho RH, Avery L (1999) A mutation in the C. elegans EXP-2 potassium channel that alters feeding behavior. Science 286:2501–2504

de Bono M, Maricq AV (2005) Neuronal substrates of complex behaviors in C. elegans. Ann Rev Neurosci 28:451–501

Dent JA, Davis MW, Avery L (1997) avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO J 16:5867–5879

Doncaster CC (1962) Nematode feeding mechanisms. I. Observations on Rhabditis and Pelodera. Nematologica 8:313–320

Franks CJ, Pemberton D, Vinogradova I, Walker RJ, Holden-Dye L (2002) The ionic basis of the resting membrane potential and action potential in the pharyngeal muscle of Caenorhabditis elegans. J Neurophysiol 87:954–961

Hadju-Cronin YM, Chen WG, Patikoglou G, Koelle MR, Sternberg PW (1999) Goa and Gqa in Caenorhabditis elegans the RGS protein EAT-16 is necessary for Goa signaling and regulates Gqa activity. Genes Dev 13:1780–1793

Hamdan FF, Ungrin MD, Abramovitz M, Ribiero P (1999) Characterization of a novel serotonin receptor from Caenorhabditis elegans: cloning and expression of two splice variants. J Neurochem 72: 1372–1383

Harris TW, Hartweig EA, Horvitz HR, Jorgensen EM (2000) Mutations in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol 150:589–599

Hobson RJ, Geng J, Gray AD, Komuniecki RW (2003) Ser-7b, a constitutively active G alpha coupled 5-HT7 like receptor expressed in the Caenorhabditis elegans M4 pharynx motorneuron. J Neurochem 87:22–29

Hobson RJ, Hapiak VM, Xiao H, Buehrer KL, Komuniecki PR, Komuniecki RW (2006) SER-7 a Caenorhabditis elegans 5HT7-like receptor is essential for the 5-HT stimulation of pharyngeal pumping and egg-laying. Genetics 172:159–169

Horridge GA (1968) The origins of the nervous system. In: Bourne GH (ed) The structure and function of nervous tissue, vol. 1. Academic, New York, pp 1–31

Iwasaki K, Staunton J, Saifee O, Nonet M, Thomas JH (1997) aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 18:613–622

Horvitz HR, Chalfie M, Sulston JE, Evans PD (1982) Serotonin and octopamine in the nematode C. elegans. Science 216:1012–1014

Johnson CD, Reinitz CA, Sithigorngul P, Stretton AOW (1996) Neuronal localization of serotonin in the nematode Ascaris suum. J Comp Neurol 367:352–360

Jones AK, Sattelle DB (2004) Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. BioEssays 26:39–49

Keane J, Avery L (2003) Mechanosensory inputs influence Caenorhabditis elegans pharyngeal activity via Ivermectin sensitivity genes. Genetics 164:153–162

Kerr R, Lev-Ram V, Baird G, Vincent P, Tsein RY, Schafer WR (2000) Optical imaging of calcium transients in neurons and pharyngeal muscle. Neuron 26:583–594

Kim K, Li C (2004) Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 475:540–550

Komuniecki RW, Hobson RJ, Rex EB, Hapiak VM, Komuniecki PR (2004) Biogenic amine receptors in parasitic nematodes: what can be learned from Caenorhabditis elegans. Mol Biochem Parasitol 137:1–11

Koushika SP, Richmond JE, Hadwiger G, Weimer RM, Jorgensen EM, Nonet ML (2001) A post-docking role for active zone protein RIM. Nature Neurosci 4:997–1005

Landell SJ, Gee VJ, Harkness PC, Doward AI, Baker ER, Gibb AJ, Millar AS (2005) RIC-3 enhances functional expression of multiple nicotinic acetylcholine receptor subtypes in mammalian cells. Mol Pharmacol 68:1431–1438

Laughton DL, Lunt GG, Wolstenholme AJ (1997) Alternative splicing of a Caenorhabditis elegans gene produces two novel inhibitory amino acid receptor subunits with identical ligand binding domains but different ion channels. Gene 201:119–125

Lee RN, Lobel L, Hengartner M, Horvitz HR, Avery L (1997) Mutations in the alpha 1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J 16:6066–6076

Lee RYN, Chalfie M, Horvitz HR, Avery L (1999) EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate co-trnasporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J Neurosci 19:159–167

Li C (2005) The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitol 131:S109−S127

Li S, Dent R (2003) Regulation of intramuscular electrical coupling by the Caenorhabditis elegans innexin INX-6. Cell 14:2630–2644

Li HY, Avery L, Denk W, Hess GP (1997) Identification of chemical synapses in the pharynx of Caenorhabditis elegans. Proc Natl Acad Sci USA 94:5912–5916

Livingston D (1991) Studies on the unc-31 gene of Caenorhabditis elegans. PhD thesis. University of Cambridge, Cambridge

Long de J, Meng Y, Dent J, Hekimi S (2004) Thiamine pyrophosphate biosynthesis and transport in the nematode Caenorhabditis elegans. Genetics 168:845–854

Maryon EB, Coronado R, Anderson P (1996) unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle-contraction. J Cell Biol 134:885–893

Maryon EB, Saari B, Anderson P (1998) Muscle-specific functions of ryanodine receptor channels in Caenorhabditis elegans. J Cell Sci 111:2885–2895

Maynard DM (1955) Activity of a crustacean ganglion. II. Pattern and interaction in burst formation. Biol Bull 109:420–436

McKay JP, Raizen DM, Gottschalk A, Schafer WR, Avery L (2004) eat-2 and eat-18 are required for nicotinic transmission in the Caenorhabditis elegans pharynx. Genetics 166:161–169

Nathoo AN, Moeller RA, Westlund BA, Hart AC (2001) Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 98:14000–14005

Nguyen M, Alfonso A, Johnson CD, Rand JB (1995) Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140:527–535

Niacaris T, Avery L (2003) Serotonin regulates repolarization of the C. elegans pharyngeal muscle. J Exp Biol 206: 223–231

Nonet ML, Grundahl K, Meyer BI, Rand JB (1993) Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73:1291–1305

Nonet ML, Holgado AM, Brewer F, Serpe CJ, Norbeck BA, Holleran J, Wei L, Hartweig EA, Jorgensen EM, Alfonso A (1999) UNC-11, a Caenorhabditis elegans AP 180 homologue, regulates the size and protein composition of synaptic vesicles. Mol Biol Cell 10:2343–2360

Olde B, McCombie WR (1997) Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. J Mol Neurosci 8:53–62

Papaioannou S, Marsden D, Franks CJ, Walker RJ, Holden-Dye L (2005) Role of a FMRFaimde-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans. J Neurobiol 65:304–319

Pelham HRB (1993) Neurotransmission and secretion. Nature 364:582

Pemberton DJ (2001) Studies in to the functinoal properties of the pharyngeal muscle of Caenorhaditis elegans. PhD Thesis, University of Southampton, Southampton

Pemberton D, Franks C, Walker R, Holden-Dye L (2001) Characterisation of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCl-α2 in the function of the native receptor. Mol Pharmacol 59:1037–1043

Phelan P (2005) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711:225–245

Raizen DM, Avery L (1994) Electrical-activity and behavior in the pharynx of Caenorhabditis elegans. Neuron 12:483–495

Raizen DM, Lee RN, Avery L (1995) Interacting genes required for pharyngeal excitation by motor-neuron mc in Caenorhabditis elegans. Genetics 141:1365–1382

Rand JB, Duerr JS, Frisby DL (2000) Neurogenetics of vesicular transporters in C. elegans. FASEB J 14:2414–2422

Ranganathan R, Cannon SC, Horvitz HR (2000) MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408:470–475

Ranganathan R, Sawin ER, Trent C, Horvitz HR (2001) Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine. J Neurosci 21:5871–5874

Robatzek M, Niacaris T, Steger K, Avery L, Thomas JH (2001) eat-11 encodes GPB-2, a G-beta(5) ortholog that interacts with G(o)alpha and G(q)alpha to regulate C. elegans behaviour. Curr Biol 11:288–293

Rex E, Komuniecki RW (2002) Characterization of a tyramine receptor in Caenorhabditis elegans. J Neurochem 82:1352–1359

Rogers CM, Franks CJ, Walker RJ, Burke JF, Holden-Dye L (2001) Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine and FMRFamide-like neuropeptides. J Neurobiol 49:235–244

SakubeY, Ando H, Kagawa H (1993) Cloning and mapping of a ryanodine receptor homologue gene of Caenorhabditis elegans. Ann NY Acad Sci 707:540–545

Sattelle DB, Buckingham SD (2006) Invertebrate studies and their ongoing contributions to neuroscience. Invert Neurosci 6:1–3

Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotion rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26:619–631

Schafer WR, Kenyon CJ (1995) A calcium channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 375:73–78

Schafer WR, Sanchez BM, Kenyon CJ (1996) Genes affecting sensitivity to serotonin in Caenorhabditis elegans. Genetics 143:1219–1230

Selverston AI, Russell DF, Miller JP, King DG (1976) The stomatogastric nervous system: structure and function of a small neural network. Prog Neurobiol 7:215–290

Shibata Y, Fujii T, Dent JA, Fujisawa H, Takagi S (2000) EAT-20, a novel transmembrane protein with EGF motifs, is required for efficient feeding in Caenorhabditis elegans. Genetics 154:635–646

Shimozono S, Fukano T, Kimura KD, Mori I, Kirino Y, Miyawaki A (2004) Slow calcium dynamics in pharyngeal muscle in Caenorhabditis elegans during fast pumping. EMBO Rep 5:521–526

Shtonda B, Avery L (2005) CCA-1, EGL-19 and EXP-2 currents shape action potentials in the Caenorhabditis elegans pharynx. J Exp Biol 208:2177–2190

Starich T, Lee R, Panzarella C, Avery L, Shaw J (1996) eat-5 and unc-7 represent a multi-gene family in Caenorhabditis elegans involved in cell-cell coupling. J Cell Biol 134:537–548

Starich T, Sheehan M, Jadrich J, Shaw J (2001) Innexins in C. elegans. Cell Comm Adhes Res 8:311–314

Starich T, Miller A, Nguyen R, Hall D, Shaw J (2003) The Caenorhabditis elegans innexin INX-3 is localized to gap-junctions and is essential for embryonic development. Dev Biol 256:403–417

Steger KA, Avery L (2004) The GAR-3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the Caenorhabditis elegans pharynx. Genetics 167:643

Steger KA, Shtonda BB, Thacker C, Snutch TP, Avery L (2005) The C. elegans T-type calcium channel CCA-1 boosts neuromuscular transmission. J Exp Biol 208:2191–2203

Sze JY, Victor M, Loer C, Shi Y, Ruvkun G (2000) Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403:560–564

Towers PR, Edwards B, Richmond JE, Sattelle DB (2005) The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. J Neurochem 93:1–9

Tsalik EL, Niacaris T, Wenick ASPK, Avery L, Hobert O (2003) LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev Biol 263:81–102

Vinogradova I, Cook A, Holden-Dye L (2006) The ionic dependence of voltage-activated inward currents in the pharyngeal muscle of Caenorhabditis elegans. Inv Neurosci (E pub ahead of print)

Walker DS, Gower NJ, Ly S, Bradley GL, Baylis HA (2002) Regulated disruption of inositol 1,4,5-triphosphate signalling in Caenorhabditis elegans reveals new functions in feeding and embryogenesis. Mol Biol Cell 13:1329–1337

Ward S, Thomson N, White JG, Brenner S (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J Comp Neurol 160:313–338

White J, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the the nematode Caenorhabditis elegans. Philos Trans Roy Soc Lond B Biol Sci 314:1–340