Giải phẫu các kênh enzyme

BMC Bioinformatics - Tập 15 - Trang 1-8 - 2014
Lukáš Pravda1, Karel Berka2, Radka Svobodová Vařeková1, David Sehnal1,3, Pavel Banáš2, Roman A Laskowski4, Jaroslav Koča1, Michal Otyepka2
1National Centre for Biomolecular Research, Faculty of Science and CEITEC, Central European Institute of Technology, Masaryk University Brno, Brno-Bohunice, Czech Republic
2Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
3Faculty of Informatics, Masaryk University Brno, Brno, Czech Republic
4European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, UK

Tóm tắt

Các vị trí hoạt động của enzyme có thể được kết nối với môi trường bên ngoài thông qua một hoặc nhiều kênh đi qua protein. Mặc dù chúng ta đã có kiến thức hiện tại về cấu trúc và chức năng của enzyme, nhưng thật bất ngờ khi biết rằng chúng ta vẫn còn rất ít thông tin về tỷ lệ xuất hiện của các kênh này và về các đặc điểm cấu trúc mà các kênh như vậy có thể có chung. Trong bài báo này, chúng tôi phân tích các kênh dài (tức là >15 Å) dẫn đến các vị trí hoạt động của 4.306 cấu trúc enzyme. Chúng tôi phát hiện rằng có hơn 64% enzyme chứa hai hoặc nhiều hơn các kênh dài, với chiều dài điển hình là 28 Å. Chúng tôi chỉ ra rằng thành phần axit amin của các kênh khác biệt đáng kể so với thành phần của vị trí hoạt động, bề mặt và phần bên trong của protein. Phần lớn các enzyme có các vị trí hoạt động bị chôn vùi, có thể tiếp cận thông qua một mạng lưới các kênh tiếp cận. Điều này chỉ ra rằng các enzyme có xu hướng có các vị trí hoạt động bị chôn vùi, với các kênh kiểm soát việc tiếp cận và thoát ra từ chúng, và điều đó gợi ý rằng các kênh có thể đóng một vai trò quan trọng trong việc xác định cơ chất enzyme.

Từ khóa

#enzyme #vị trí hoạt động #kênh enzyme #cấu trúc protein #thành phần axit amin

Tài liệu tham khảo

Huang X, Holden HM, Raushel FM: Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu Rev Biochem. 2001, 70: 149-180. 10.1146/annurev.biochem.70.1.149. Park J, Czapla L, Amaro RE: Molecular simulations of aromatase reveal new insights into the mechanism of ligand binding. J Chem Inf Model. 2013, 53: 2047-2056. 10.1021/ci400225w. Sgrignani J, Magistrato A: Influence of the membrane lipophilic environment on the structure and on the substrate access/egress routes of the human aromatase enzyme. A computational study. J Chem Inf Model. 2012, 52: 1595-1606. 10.1021/ci300151h. Madrona Y, Hollingsworth SA, Khan B, Poulos TL: P450cin active site water: implications for substrate binding and solvent accessibility. Biochemistry. 2013, 52: 5039-5050. 10.1021/bi4006946. Cui Y-L, Zhang J-L, Zheng Q-C, Niu R-J, Xu Y, Zhang H-X, Sun C-C: Structural and dynamic basis of human cytochrome P450 7B1: a survey of substrate selectivity and major active site access channels. Chemistry. 2013, 19: 549-557. 10.1002/chem.201202627. Lee SJ, McCormick MS, Lippard SJ, Cho U-S: Control of substrate access to the active site in methane monooxygenase. Nature. 2013, 494: 380-384. 10.1038/nature11880. Pryor EE, Horanyi PS, Clark KM, Fedoriw N, Connelly SM, Koszelak-Rosenblum M, Zhu G, Malkowski MG, Wiener MC, Dumont ME: Structure of the integral membrane protein CAAX protease Ste24p. Science. 2013, 339: 1600-1604. 10.1126/science.1232048. Xu S, Mueser TC, Marnett LJ, Funk MO: Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis. Structure. 2012, 20: 1490-1497. 10.1016/j.str.2012.06.003. Guskov A, Nordin N, Reynaud A, Engman H, Lundbäck A-K, Jong AJO, Cornvik T, Phua T, Eshaghi S: Structural insights into the mechanisms of Mg2+ uptake, transport, and gating by CorA. Proc Natl Acad Sci U S A. 2012, 109: 18459-18464. 10.1073/pnas.1210076109. Otyepka M, Berka K, Anzenbacher P: Is there a relationship between the substrate preferences and structural flexibility of cytochromes P450?. Curr Drug Metab. 2012, 13: 130-142. 10.2174/138920012798918372. Rengachari S, Aschauer P, Schittmayer M, Mayer N, Gruber K, Breinbauer R, Birner-Gruenberger R, Dreveny I, Oberer M: Conformational plasticity and ligand binding of bacterial monoacylglycerol lipase. J Biol Chem. 2013, 288: 31093-31104. 10.1074/jbc.M113.491415. Salter MD, Blouin GC, Soman J, Singleton EW, Dewilde S, Moens L, Pesce A, Nardini M, Bolognesi M, Olson JS: Determination of ligand pathways in globins: apolar tunnels versus polar gates. J Biol Chem. 2012, 287: 33163-33178. 10.1074/jbc.M112.392258. Voss NR, Gerstein M, Steitz TA, Moore PB: The geometry of the ribosomal polypeptide exit tunnel. J Mol Biol. 2006, 360: 893-906. 10.1016/j.jmb.2006.05.023. Lemoine D, Jiang R, Taly A, Chataigneau T, Specht A, Grutter T: Ligand-gated Ion channels: new insights into neurological disorders and ligand recognition. Chem Rev. 2012, 112: 6285-6318. 10.1021/cr3000829. Kasianowicz JJ: Introduction to Ion channels and disease. Chem Rev. 2012, 112: 6215-6217. 10.1021/cr300444k. Knight AM, Culviner PH, Kurt-Yilmaz N, Zou T, Ozkan SB, Cavagnero S: Electrostatic effect of the ribosomal surface on nascent polypeptide dynamics. ACS Chem Biol. 2013, 8: 1195-1204. 10.1021/cb400030n. Eisenberg B: Ionic channels in biological membranes: natural nanotubes. Acc Chem Res. 1998, 4842: 117-123. 10.1021/ar950051e. Wallace B: Gramicidin channels and pores. Annu Rev Biophys Biophys Chem. 1990, 19: 127-157. 10.1146/annurev.bb.19.060190.001015. Roux B: Computational studies of the gramicidin channel. Acc Chem Res. 2002, 35: 366-375. 10.1021/ar010028v. Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A: Modeling and simulation of Ion channels. Chem Rev. 2012, 112: 6250-6284. 10.1021/cr3002609. Kraut DA, Carroll KS, Herschlag D: Challenges in enzyme mechanism and energetics. Annu Rev Biochem. 2003, 72: 517-571. 10.1146/annurev.biochem.72.121801.161617. Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM: Electrostatic basis for enzyme catalysis. Chem Rev. 2006, 106: 3210-3235. 10.1021/cr0503106. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG: How enzymes work: analysis by modern rate theory and computer simulations. Science. 2004, 303: 186-195. 10.1126/science.1088172. Benkovic S, Hammes-Schiffer S: A perspective on enzyme catalysis. Science. 2003, 301: 1196-1202. 10.1126/science.1085515. Porter CT, Bartlett GJ, Thornton JM: The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 2004, 32 (Database issue): D129-D133. 10.1093/nar/gkh028. Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, Otyepka M, Wade RC, Tsuda M, Nagata Y, Damborsky J: Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat Chem Biol. 2009, 5: 727-733. 10.1038/nchembio.205. Stepankova V, Khabiri M, Brezovsky J, Pavelka A, Sykora J, Amaro M, Minofar B, Prokop Z, Hof M, Ettrich R, Chaloupkova R, Damborsky J: Expansion of access tunnels and active-site cavities influence activity of haloalkane dehalogenases in organic cosolvents. Chembiochem. 2013, 14: 890-897. 10.1002/cbic.201200733. Skopalík J, Anzenbacher P, Otyepka M: Flexibility of human cytochromes P450: molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, which correlate with their substrate preferences. J Phys Chem B. 2008, 112: 8165-8173. 10.1021/jp800311c. Hendrychová T, Berka K, Navrátilová V, Anzenbacher P, Otyepka M: Dynamics and hydration of the active sites of mammalian cytochromes P450 probed by molecular dynamics simulations. Curr Drug Metab. 2012, 13: 177-189. 10.2174/138920012798918408. Sehnal D, Svobodová Vařeková R, Berka K, Pravda L, Navrátilová V, Banáš P, Ionescu C-M, Otyepka M, Koča J: MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminform. 2013, 5: 39-10.1186/1758-2946-5-39. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982, 157: 105-132. 10.1016/0022-2836(82)90515-0. Zimmerman JM, Eliezer N, Simha R: The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol. 1968, 21: 170-201. 10.1016/0022-5193(68)90069-6. Webby CJ, Lott JS, Baker HM, Baker EN, Parker EJ: Crystallization and preliminary X-ray crystallographic analysis of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Mycobacterium tuberculosis. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2005, 61 (Pt 4): 403-406. 10.1107/S1744309105007931. Houborg K, Harris P, Petersen J, Rowland P, Poulsen J-CN, Schneider P, Vind J, Larsen S: Impact of the physical and chemical environment on the molecular structure of Coprinus cinereus peroxidase. Acta Crystallogr Sect D: Biol Crystallogr. 2003, D59: 989-996. 10.1107/S0907444903006772. Lundell TK, Mäkelä MR, Hildén K: Lignin-modifying enzymes in filamentous basidiomycetes-ecological, functional and phylogenetic review. J Basic Microbiol. 2010, 50: 5-20. 10.1002/jobm.200900338. Cherry JR, Lamsa MH, Schneider P, Vind J, Svendsen A, Jones A, Pedersen AH: Directed evolution of a fungal peroxidase. Nat Biotechnol. 1999, 17: 379-384. 10.1038/7939. Holliday GL, Mitchell JBO, Thornton JM: Understanding the functional roles of amino acid residues in enzyme catalysis. J Mol Biol. 2009, 390: 560-577. 10.1016/j.jmb.2009.05.015. Dill KA: Dominant forces in protein folding. Biochemistry. 1990, 29: 7133-7155. 10.1021/bi00483a001. Wilkinson B, Gilbert HF: Protein disulfide isomerase. Biochim Biophys Acta. 2004, 1699: 35-44. 10.1016/j.bbapap.2004.02.017. Furnham N, Holliday GL, de Beer TAP, Jacobsen JOB, Pearson WR, Thornton JM: The catalytic site atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res. 2014, 42: D485-D489. 10.1093/nar/gkt1243. Berka K, Hanák O, Sehnal D, Banáš P, Navrátilová V, Jaiswal D, Ionescu C-M, Svobodová Vařeková R, Koča J, Otyepka M: MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels. Nucleic Acids Res. 2012, 40 (Web Server issue): W222-W227. 10.1093/nar/gks363. Berman H, Henrick K, Nakamura H, Markley JL: The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 2007, 35 (Database issue): D301-D303. 10.1093/nar/gkl971.