Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress

Central European Journal of Biology - Tập 9 - Trang 1215-1225 - 2014
Fayçal Boughalleb1, Raoudha Abdellaoui1, Nabil Ben-Brahim2, Mohammed Neffati1
1Laboratoire d’Ecologie Pastorale, Institut des Régions Arides de Médenine, Université de Gabes, Médenine, Tunisia
2Institut Supérieur Agronomique de Chott-Mariem, Université de Sousse, Chott-Mariem (Sousse), Tunisia

Tóm tắt

The present study was designed to study the effect of drought on root, stem and leaf anatomy of Astragalus gombiformis Pomel. Several root, stem and leaf anatomical parameters (cross section diameter, cortex, root cortical cells, pith, leaf lamina and mesophyll thickness) were reduced under moderate to severe water deficit (20–30 days of withheld irrigation). The stele/cross section root ratio increased under moderate water deficit. The root’s and stems vascular systems showed reduced xylem vessel diameter and increased wall thickness under water deficit. In addition, the root xylem vessel density was increased in these drought conditions while it was unchanged in the stems. The stomata density was increased under prolonged drought conditions whereas the stomata size was untouched. The leaf vascular system showed reduced xylem and phloem tissue thickness in the main vein under moderate to severe water deficit. However, in the lamina the vascular tissue and the distance between vascular bundle were unaffected. Our findings suggest a complex network of anatomical adaptations such as a reduced vessel size with increased wall thickness, lesser cortical and mesophyll parenchyma formation and increased stomata density. These proprieties are required for the maintenance of water potential and energy storage under water stress which can improve the resistance of A. gombiformis to survive in arid areas.

Tài liệu tham khảo

Wang W., Vincour B., Altman A., Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance, Planta, 2003, 218, 1–14 Kutlu N., Terzi R., Tekeli C., Senel G., Battal P., Kadioglu A., Changes in anatomical structure and levels of endogenous phytohormones during leaf rolling in Ctenanthe setosa, Turk. J. Biol., 2009, 33, 115–122 Reddy A.R., Chiatanya K.V., Vivekanandan M., Drought induced responses of photosynthesis and antioxidant metabolism in higher plants, J. Plant Physiol., 2004, 161, 1189–1202 Galle A., Haldimann P., Feller U., Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery, New Phytol., 2007, 174, 799–810 Kamel A., Loser D.M., Contribution of carbohydrates and other solutes to osmotic adjustment in wheat leaves under water stress, J. Plant Physiol., 1995, 145, 363–366 Domingo R., Ruiz-Sánchez M.C., Sánchez-Blanco M.J., Torrecillas A., Water relations, growth and yield of Fino lemon trees under regulated deficit irrigation, Irrig. Sci., 1999, 16, 115–123 Akram M., Growth and yield components of wheat under water stress of different growth stages, Bang. J. Agril. Res., 2011, 36, 455–468 Makbul S., Saruhan G.N., Durmus N., Guven S., Changes in anatomical and physiological parameters of soybean under drought stress, Turk. J. Bot., 2011, 35, 369–377 Ben Ahmed C., Ben Rouina B., Boukhris M., Effects of water deficit on olive trees cv. Chemlali under field conditions in arid region in Tunisia, Sci. Hort., 2007, 113, 267–277 Bosabalidis A.M., Kofidis G., Comparative effects of drought stress on leaf anatomy of two olive cultivars, Plant Sci. 2002, 163, 375–379 Olmos E., Sanchez-Blanco M.J., Fernandez T., Alarcon J.J., Subcellular effects of drought stress in Rosmarinus officinalis, Plant Biol., 2007, 9, 77–84 Shao H.B., Chu L.Y., Jaleel C.A., Zhao C.X., Water deficit stress induced anatomical changes in higher plants, C.R. Biol., 2008, 331, 215–225 Peña-Valdivia C.B., Sánchez-Urdaneta A.B., JRangel J.M., Muñoz J.J., García-Nava R., Velázquez R.C., Anatomical root variations in response to water deficit: wild and domesticated common bean (Phaseolus vulgaris L.), Biol. Res., 2010, 43, 417–427 Burnett S.E., Pennisi S.V., Thomas P.A., van Iersel M.W., Controlled Drought Affects Morphology and Anatomy of Salvia splendens, J. Amer. Soc. Hort. Sci., 2005, 130, 775–781 El-Afry M.M., El-Nady M.F., Abdelmonteleb E.B., Anatomical studies on drought-stressed wheat plants (Triticum aestivum L.) treated with some bacterial strains, Acta Biol. Szeg., 2012, 56, 165–174 Da Silva S., Castro E.M., Soares A.M., Effects of different water regimes on the anatomical characteristics of roots of grasses promising for revegetation of areas surrounding hydroelectric reservoirs, Ciénc Agrotec Lavras, 2003, 27, 393–397 Stolf R., Medri M.E., Pimenta J.A., Boeger M.R.T., Dias J., Lemos N.G., de Oliveira M.C.N., Brogin R.L., Yamanaka N., Neumaier N., Farias J.R.B., Nepomuceno A.L., Morpho-anatomical and Micromorphometrical Evaluations in Soybean Genotypes during Water Stress, Braz. Arch. Biol. Technol., 2009, 52, 1313–1331 Bussotti F., Bottacci A., Bartolesi A., Grossoni P., Tani C., Morpho-anatomical alterations in leaves collected from beech trees (Facus sylvatica L.) in conditions of natural water stress, Environ. Exp. Bot., 1995, 35, 201–213 Child R.D., Summers J.E., Babij J., Farrent J.W., Bruce D.M., Increased resistance to pod chatter is associated with changes in the vascular structure in pods of a resynthesized Brassica napus line, J. Exp. Bot., 2003, 54, 1919–1930 Jacobsen A.L., Ewers F.W., Pratt R.B., Paddock W.A., Davis S.D., Do xylem fibers affect vessel cavitation resistance, Plant Physiol., 2005, 139, 546–556 Chaieb M., Boukhris M., Flore succinte et illustrée des zones arides et sahariennes de Tunisie. Association pour la Protection de la Nature et de l’Environnement, L’Or du temps, Sfax, 1998 El-Rhaffari L., Zaid A., Pratique de la phytothérapie dans le sud-est du Maroc (Tafilalet): Un savoir empirique pour une pharmacopée rénovée. Des sources du savoir aux médicaments du futur, 2002, 1, 293–318 Teyeb H., Zanina N., Neffati M., Douki W., Najjar M.F., Cytotoxic and antibacterial activities of leaf extracts of Astragalus gombiformis Pomel (Fabaceae) growing wild in Tunisia, Turk. J. Biol., 2012, 36, 53–58 Zhu J.K., Plant salt tolerance, Trends Plant Sci., 2001, 6, 66–71 Martinez-Fernandez D., Walker D.J., Romero P., Martınez-Ballesta M.C., Correal E., The Response of the Leguminous Fodder Plant Bituminaria bituminosa to Water Stress, J. Agro. Crop. Sci., 2012, 1, 931–2250 Fini A., Guidib L., Ferrini F., Brunettia C., Di Ferdinandoa M., Biricolti S., Pollastri S., Calamaia L., Tattini M., Drought stress has contrasting effects on antioxidant enzymes activity and phenyl propanoid biosynthesis in Fraxinus ornus leaves: An excess light stress affair, J. Plant Physiol., 2012, 169, 929–939 Sairam R.K., Tyagi A., Physiology and molecular biology of salinity stress tolerance in plants, Curr. Sci., 2004, 6, 407–421 Peña-Valdivia C.B., Sánchez-Urdaneta A.B., Effects of substrate water potential in root growth of Agave salmiana Otto ex Salm-Dyck seedlings, Biol. Res., 2009, 42, 239–248 Singh A., Shamim M., Singh K.N., Genotypic Variation in Root Anatomy, Starch Accumulation, and Protein Induction in Upland Rice (Oryza sativa) Varieties under Water Stress, Agric. Res., 2013, 2, 24–30 Saleem M., Lamkemeyer T., Schützenmeister M.T., Sakai H., Piepho H.P., Nordheim A., Hochholdinge F., Specification of cortical parenchyma and stele of maize primary roots by asymmetric levels of auxin, cytokinin, and cytokinin-regulated proteins, Plant Physiol., 2010, 152, 4–18 Thomas D.S., Montagu K.D., Conroy J.P., Changes in wood density of Eucalyptus camaldulensis due to temperature-the physiological link between water viscosity and wood anatomy, Forest Ecos. Manag., 2004, 193, 157–165 Mahmooduzzafar Hegazy S.S., Aref I.M., Iqbal M., Anatomical changes in the wood of Syzygium cumini exposed to coal-smoke pollution, J. Food Agric. Environ., 2010, 8, 959–964 Makbul S., Saruhan G.N., Durmus N., Guven S., Changes in anatomical and physiological parameters of soybean under drought stress, Turk. J. Bot., 2011, 35, 369–377 Sibounheuang V., Basnayake J., Fukai S., Genotypic consistency in the expression of leaf water potential in rice (Oryza sativa L.), Field Crops Res., 2006, 97, 142–154 Nicotra A.B., Babicka N., Westoby N., Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phylogenetically independent contrasts. Oecologia, 2002, 130, 136–145 Maherali H., Pockman W.T., Jackson R.B., Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 2004, 85, 2184–2199 Hacke U.G., Sperry J.S., Pockman W.T., Davis S.D., McCulloh K.A., Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure, Oecologia, 2001, 126, 457–461 Kohonen M.M., Helland A., On the function of wall sculpturing in xylem conduits, J. Bionic. Engin., 2009, 6, 324–329 Al-Khalifah N.S., Khan P.R., Al-Abdulkader A.M., Nasroun T., Impact of water stress on the sapwood anatomy and functional morphology of Calligonum comosum, I.A.W.A. J., 2006, 27, 299–312 Lersten N.R., Curtis J.D., Idioblasts and other unusual internal foliar secretary structures in Scrophulariaceae, Plant Syst. Evol., 2001, 227, 63–73 Syvertsen J.F., Lloyd J., McConchie C., Kriedemann P.E., Farquhar G.D., On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves, Plant Cell Environ., 1995, 18, 149–157 Bongi G., Loreto F., Gas exchange properties of salt-stressed olive (Olea europaea L.) leaves, Plant Physiol., 1989, 90, 1408–1416 Ogbonnaya C.I., Nwalozie M.C., Roy-Macauley H., Annerose D.J.M., Growth and water relations of Kenaf (Hibiscus cannabinus L.) under water deficit on a sandy soil, Ind. Crops Prod., 1998, 8, 65–76 Esau K., Anatomy of seed plants. 2nd ed., New York, John Wiley and Sons, 1977, 351–353 Levitt J., Responses of plants to Environmental Stresses. Academic Press, New York, 1972, 31–47 Sam O., Jeréz E., Dell’Amico J., Ruiz-Sánchez M.C., Water stress induced changes in anatomy of tomato leaf epidermis, Biol. Plant., 2000, 43, 275–277 Farouk S., Ramadan Amany A., Improving growth and yield of cowpea by foliar application of chitosan under water stress, Egypt. J. Biol., 2012, 14, 14–26 Sobrado M.A., Relationship of water transport to anatomical features in the mangrove Laguncularia racemosa grown under contrasting salinities. New Phytol., 2007, 173, 584–591 Xu Z., Zhou G., Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass, J. Exp. Bot., 2008, 59, 3317–3325 Laajimi N.O., Boussadia O., Skhiri F.H., Teixeira da Silva J.A., Rezgui S., Hellali R., Anatomical Adaptations in Vegetative Structures of Apricot Tree (Prunus armeniaca L.) cv. ‘Amor El Euch’ Grown under Water Stress, F.V.C.S.B., 2011, 5, 46–51 Zhang Y.P., Wang Z.M., Wu Y.C., Zhang X., Stomatal characteristics of different green organs in wheat under different irrigation regimes, Acta Agr. Sin., 2006, 32, 70–75 Rodiyati A., Arisoesilaningsih E., Isagi Y., Nakagoshi N., Responses of Cyperus brevifolius (Rottb.) Hassk. and Cyperus kyllingia Endl. to varying soil water availability, Environ. Exp. Bot., 2005, 53, 259–269