Anatase-rutile phase transformation and photocatalysis in peroxide gel route prepared TiO2 nanocrystals: Role of defect states

Solid State Sciences - Tập 108 - Trang 106392 - 2020
B. Anitha1, M. Abdul Khadar1
1Centre for Nanoscience and Nanotechnology, University of Kerala, Kariavattom, Thiruvananthapuram, 695 581, Kerala, India

Tài liệu tham khảo

Yaseen, 2019, Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review, Int. J. Environ. Sci. Technol., 16, 1193, 10.1007/s13762-018-2130-z Lofrano, 2010, Wastewater management through the ages: a history of mankind, Sci. Total Environ., 408, 5254, 10.1016/j.scitotenv.2010.07.062 R Ananthashankar, 2013, Production, characterization and treatment of textile effluents: a critical review, J. Chem. Eng. Process Technol., 1 Deng, 2015, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1, 167, 10.1007/s40726-015-0015-z Ibhadon, 2013, Heterogeneous photocatalysis: recent advances and applications, Catalysts, 3, 189, 10.3390/catal3010189 Stasinakis, 2008, Use of selected advanced oxidation processes (AOPs) for wastewater treatment - a mini review, Glob. Nest J., 10, 376 Hoffmann, 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69, 10.1021/cr00033a004 Kominami, 2002, Correlation between some physical properties of titanium dioxide particles and their photocatalytic activity for some probe reactions in aqueous systems, J. Phys. Chem. B, 106, 10501, 10.1021/jp0147224 Guillard, 2003, Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2, J. Photochem. Photobiol. A Chem., 158, 27, 10.1016/S1010-6030(03)00016-9 Andronic, 2009, Photocatalytic activity of cadmium doped TiO2 films for photocatalytic degradation of dyes, Chem. Eng. J., 152, 64, 10.1016/j.cej.2009.03.031 Cassano, 2000, Reaction engineering of suspended solid heterogeneous photocatalytic reactors, Catal. Today, 58, 167, 10.1016/S0920-5861(00)00251-0 Ding, 2020, Nanoporous TiO2 spheres with tailored textural properties: controllable synthesis, formation mechanism, and photochemical applications, Prog. Mater. Sci., 109, 100620, 10.1016/j.pmatsci.2019.100620 Zhang, 2014, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys., 16, 20382, 10.1039/C4CP02201G Ohno, 2001, Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases, J. Catal., 203, 82, 10.1006/jcat.2001.3316 Hurum, 2003, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR, J. Phys. Chem. B, 107, 4545, 10.1021/jp0273934 Jiang, 2018, Anatase and rutile in evonik aeroxide P25: heterojunctioned or individual nanoparticles?, Catal. Today, 300, 12, 10.1016/j.cattod.2017.06.010 Hu, 2018, Photocatalytic activity and the radiative lifetimes of excitons via an ab initio approach, J. Mater. Chem. A., 6, 15027, 10.1039/C8TA04140G Pan, 2013, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications, Nanoscale, 5, 3601, 10.1039/c3nr00476g Qian, 2018, Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview, Catal. Today, 335, 78, 10.1016/j.cattod.2018.10.053 Kong, 2011, Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency, J. Am. Chem. Soc., 133, 16414, 10.1021/ja207826q Yan, 2013, Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile, Phys. Chem. Chem. Phys., 15, 10978, 10.1039/c3cp50927c Morgan, 2010, Intrinsic n-type defect formation in TiO2: a comparison of rutile and anatase from GGA+U calculations, J. Phys. Chem. C, 114, 2321, 10.1021/jp9088047 Zhao, 2017, A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O, J. Mater., 3, 17 Anpo, 1989, In situ photoluminescence of TiO2 as a probe of photocatalytic reactions, J. Phys. Chem., 93, 7300, 10.1021/j100358a008 V Baiju, 2009, Correlating photoluminescence and photocatalytic activity of mixed-phase nanocrystalline titania, Catal. Lett., 130, 130, 10.1007/s10562-008-9798-5 Brüninghoff, 2019, Time-dependent photoluminescence of nanostructured anatase TiO2 and the role of bulk and surface processes, J. Phys. Chem. C, 123, 26653, 10.1021/acs.jpcc.9b06890 Zong, 2019, Revisiting structural and photocatalytic properties of g-C3N4/TiO2: is surface modification of TiO2 by calcination with urea an effective route to “solar” photocatalyst?, Catal. Today, 335, 252, 10.1016/j.cattod.2018.12.015 Liqiang, 2004, The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity, J. Solid State Chem., 177, 3375, 10.1016/j.jssc.2004.05.064 Štengl, 2010, Molybdenum-doped anatase and its extraordinary photocatalytic activity in the degradation of Orange II in the UV and vis regions, J. Phys. Chem. C, 114, 10.1021/jp104271q Anitha, 2016, Paramagnetic behavior of Co doped TiO2 nanocrystals controlled by self-purification mechanism, J. Solid State Chem., 239, 237, 10.1016/j.jssc.2016.04.035 Zhang, 2019, Annealing temperature-dependent electrochemical properties of Aeroxide P25 TiO2 nanoparticles as anode material for lithium storage, Prog. Nat. Sci. Mater. Int., 29, 679, 10.1016/j.pnsc.2019.11.008 Spurr, 1957, Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer, Anal. Chem., 29, 760, 10.1021/ac60125a006 Gribb, 1997, Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2, Am. Mineral., 82, 717, 10.2138/am-1997-7-809 Escobedo Morales, 2007, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures, Rev. Mexic. Fisica S., 53, 18 Kang, 2010, Quasiparticle and optical properties of rutile and anatase TiO2, Phys. Rev. B Condens. Matter, 82, 1, 10.1103/PhysRevB.82.085203 Maira, 2001, Fourier transform infrared study of the performance of nanostructured TiO 2 particles for the photocatalytic oxidation of gaseous toluene, J, 202, 413 Wang, 2012, TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity, Catal. Commun., 19, 96, 10.1016/j.catcom.2011.12.028 Mikami, 2002, Lattice dynamics and dielectric properties of (formula presented) anatase: a first-principles study, Phys. Rev. B Condens. Matter, 66, 1, 10.1103/PhysRevB.66.155213 Yu, 2003, The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition, J. Phys. Chem. B, 107, 13871, 10.1021/jp036158y Mohemmed Shanid, 2011, Frohlich interaction and associated resonance enhancement in nanostructured copper oxide films, J. Raman Spectrosc., 42, 1769, 10.1002/jrs.2945 Zhang, 2006, Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2 film at ambient temperature, Chemosphere, 65, 2282, 10.1016/j.chemosphere.2006.05.027 Zhang, 2000, Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation, J. Mater. Res., 15, 437, 10.1557/JMR.2000.0067 Zaban, 2000, The effect of the preparation condition of TiO2Colloids on their surface structures, J. Phys. Chem. B, 104, 4130, 10.1021/jp993198m Okada, 2004, Effect of silica additive on the anatase-to-rutile phase transition, J. Am. Ceram. Soc., 84, 1591, 10.1111/j.1151-2916.2001.tb00882.x Shannon, 1964, Topotaxy in the anatase-rutile transformation, Am. Mineral., 49, 1707 Ding, 1996, Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders, J. Mater. Sci. Lett., 15, 1789, 10.1007/BF00275343 Hanaor, 2011, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46, 855, 10.1007/s10853-010-5113-0 Bloh, 2019, A holistic approach to model the kinetics of photocatalytic reactions, Front. Chem., 7, 128, 10.3389/fchem.2019.00128 Ollis, 1991, Solar-assisted photocatalysis for water purification: issues, data, questions, 593 Nakata, 2012, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol. C Photochem. Rev., 13, 169, 10.1016/j.jphotochemrev.2012.06.001 Xu, 1999, Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions, Ind. Eng. Chem. Res., 38, 373, 10.1021/ie980378u Thompson, 2006, Surface science studies of the photoactivation of TIO2 - new photochemical processes, Chem. Rev., 106, 4428, 10.1021/cr050172k Zhang, 1998, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B, 102, 10871, 10.1021/jp982948+ Wang, 2016, Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature, Sci. Rep., 6, 20491, 10.1038/srep20491 Yang, 2009, Photoinduced electron paramagnetic resonance study of electron traps in TiO2 crystals: oxygen vacancies and Ti3+ ions, Appl. Phys. Lett., 94, 162114, 10.1063/1.3124656 Naldoni, 2019, Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production, ACS Catal., 9, 345, 10.1021/acscatal.8b04068 Bin Xiong, 2012, Ti 3+ in the surface of titanium dioxide: generation, properties and photocatalytic application, J. Nanomater. Strunk, 2010, A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on MCM-48, J. Phys. Chem. C, 114, 16937, 10.1021/jp100104d Carey, 2019, Screening doping strategies to mitigate electron trapping at anatase TiO2 surfaces, J. Phys. Chem. C, 123, 22358, 10.1021/acs.jpcc.9b05840 Zhou, 2003, Kinetic studies for photocatalytic degradation of Eosin B on a thin film of titanium dioxide, Ind. Eng. Chem. Res., 42, 6020, 10.1021/ie030366v Sekiya, 2000, Absorption spectra of anatase TiO2 single crystals heat-treated under oxygen atmosphere, J. Phys. Chem. Solid., 61, 1237, 10.1016/S0022-3697(99)00424-2 Choudhury, 2013, Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles, Int. Nano Lett., 3, 25, 10.1186/2228-5326-3-25 Zhang, 2014, Observation of defect state in highly ordered titanium dioxide nanotube arrays, Nanotechnology, 25, 275603, 10.1088/0957-4484/25/27/275603 V Saraf, 1998, Synthesis of nanophase TiO2 by ion beam sputtering and cold condensation technique, Int. J. Mod. Phys. B, 12, 2635, 10.1142/S0217979298001538 Lei, 2001, Preparation and photoluminescence of highly ordered TiO2 nanowire arrays, Appl. Phys. Lett., 78, 1125, 10.1063/1.1350959 Vequizo, 2018, Oxygen induced enhancement of NIR emission in brookite TiO2 powders: comparison with rutile and anatase TiO2 powders, Phys. Chem. Chem. Phys., 20, 3241, 10.1039/C7CP06975H