Anatase TiO2 nanoparticles for lithium-ion batteries

Ionics - Tập 24 Số 10 - Trang 2925-2934 - 2018
S. S. El-Deen1, Ahmed M. Hashem2,3, Ashraf E. Abdel-Ghany2,4, Sylvio Indris3, Helmut Ehrenberg3, A. Mauger4, C. Julien4
1Department of Nuclear Chemistry, Hot Laboratories Center, Atomic Energy Authority, Inshas, Egypt
2Inorganic Chemistry Department, National Research Centre, Giza, Egypt
3Karlsruhe Institute of Technology (KIT), Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Eggenstein-Leopoldshafen, Germany
4Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), Sorbonne Université, Paris, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Han B, Kim KJ, Hwang BM, Kim SB, Park KW (2013) Single-crystalline rutile TiO2 nanowires for improved lithium ion intercalation properties. J Power Sources 222:225–229. https://doi.org/10.1016/j.jpowsour.2012.08.073

Liu CL, Wang Y, Zhang C, Li XS, Dong WS (2014) In situ synthesis of α-MoO3/graphene composites as anode materials for lithium ion battery. Mater Chem Phys 143(3):1111–1118. https://doi.org/10.1016/j.matchemphys.2013.11.011

Julien CM, Mauger A, Vijh A, Zaghib K (2016) Lithium batteries: science and technology. Springer, Cham, 630 pages. https://doi.org/10.1007/978-3-319-19108-9

Doh CH, Kim DH, Kim HS, Shin HM, Jeong YD, Moon SI, Jin BS, Eom SW, Kim HS, Kim KW, Oh DH, Veluchamy A (2008) Thermal and electrochemical behavior of C/LixCoO2 cell during safety test. J Power Sources 175(2):881–885. https://doi.org/10.1016/j.jpowsour.2007.09.102

Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38(2):183–197. https://doi.org/10.1016/S0008-6223(99)00141-4

Qiao H, Xiao L, Zhang L (2008) Phosphatization: a promising approach to enhance the performance of mesoporous TiO2 anode for lithium ion batteries. Electrochem Commun 10(4):616–620. https://doi.org/10.1016/j.elecom.2008.02.010

Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Net-structured NiO–C nanocomposite as Li-intercalation electrode material. Electrochem Commun 9(5):1180–1184. https://doi.org/10.1016/j.elecom.2007.01.014

Oh SW, Bang HJ, Bae YC, Sun YK (2007) Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J Power Sources 173(1):502–509. https://doi.org/10.1016/j.jpowsour.2007.04.087

Chen G, Rodriguez R, Fei L, Xu Y, Deng S, Smirnov S, Luo H (2014) A facile hydrothermal route to iron(III) with conductive additives as composite anode for lithium ion batteries. J Power Sources 259:227–232. https://doi.org/10.1016/j.jpowsour.2014.02.096

Xu Y, Jian G, Liu Y, Zhu Y, Zachariah MR, Wang C (2014) Superior electrochemical performance and structure evolution of mesoporous Fe2O3 anodes for lithium-ion batteries. Nano Energy 3:26–35. https://doi.org/10.1016/j.nanoen.2013.10.003

Oh HD, Lee SW, Kim SO, Lee JK (2013) Facile synthesis of carbon layer-entangled Fe2O3 clusters as anode materials for improved Li-ion batteries. J Power Sources 244:575–580. https://doi.org/10.1016/j.jpowsour.2013.01.120

Jiang Y, Zhang D, Li Y, Yuan T, Bahlawane N, Liang C, Sun W, Lu Y, Yan M (2014) AmorphousFe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy 4:23–30. https://doi.org/10.1016/j.nanoen.2013.12.001

Casino S, Di Lupo F, Francia C, Tuel A, Bodoardo S, Gerbaldi C (2014) Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO2 nanocrystalline Li-ion battery anodes. J Alloys Compd 594:114–121. https://doi.org/10.1016/j.jallcom.2014.01.111

Di Lupo F, Tuel A, Mendez V, Francia C, Meligrana G, Bodoardo S, Gerbaldi C (2014) Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes. Acta Mater 69:60–67. https://doi.org/10.1016/j.actamat.2014.01.057

Wang D, Wu X, Zhang Y, Wang J, Yan P, Zhang C, He D (2014) The influence oftheTiO2 particle size on the properties of Li4Ti5O12 anode material for lithium-ion battery. Ceram Int 40(2):3799–3804. https://doi.org/10.1016/j.ceramint.2013.09.038

Usui H, Wasada K, Shimizu M, Sakaguchi H (2013) TiO2/Si composites synthesized by sol–gel method and their improved electrode performance as Li-ion battery anodes. Electrochim Acta 111:575–580. https://doi.org/10.1016/j.electacta.2013.08.015

Yan Y, Wang J, Chang Q, Babikier M, Wang H, Li H, Yu Q, Gao S, Jiao S (2013) Fabrication of mesoporous TiO2 electrodes by chemical technique for dye-sensitized solar cells. Electrochim Acta 94:277–284. https://doi.org/10.1016/j.electacta.2013.02.019

Chen CL, Chang TW, Su SC, Teng H, Lee YL (2014) High performance solid-state dye-sensitized solar cells based on poly(acrylonitrile-co-vinyl acetate)/TiO2 nanoparticles redox electrolytes. J Power Sources 247:406–411. https://doi.org/10.1016/j.jpowsour.2013.08.117

Hong CK, Jung YH, Kim HJ, Park KH (2014) Electrochemical properties of TiO2 nanoparticle/nanorod composite photoanode for dye-sensitized solar cells. Curr Appl Phys 14(3):294–299. https://doi.org/10.1016/j.cap.2013.12.003

Xiong J, Yang B, Zhou C, Yang J, Duan H, Huang W, Zhang X, Xia X, Zhang L, Huang H, Gao Y (2014) Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer. Org Electron 15(4):835–843. https://doi.org/10.1016/j.orgel.2014.01.024

Umar AA, Nafisah S, Saad SKM, Tan ST, Balouch A, Salleh M, Oyama M (2014) Pori ferous microtablet of anatase TiO2 growth on an ITO surface for high efficiency dye-sensitized solar cells. Sol Energy Mater Sol Cells 122:174–182. https://doi.org/10.1016/j.solmat.2013.12.002

Zhang S, Zhang S, Peng B, Wang H, Yu H, Wang H, Peng F (2014) High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light. Electrochem Commun 40:24–27. https://doi.org/10.1016/j.elecom.2013.12.013

Lee HU, Lee SC, Lee SM, Lee JW, Kim HJ, Lee J (2013) Improved photocatalytic and antibacterial activities of three-dimensional polycrystalline anatase TiO2 photocatalysts. Appl Catal A 467:394–399. https://doi.org/10.1016/j.apcata.2013.07.042

Lee AC, Lin RH, Yang CY, Lin MH, Wang WY (2008) Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol–gel method. Mater Chem Phys 109(2-3):275–280. https://doi.org/10.1016/j.matchemphys.2007.11.016

Xie Y, Wu Z, Wu Q, Liu M, Piao L (2014) Effect of different base structures on the performance of the hierarchical TiO2 photocatalysts. Catal Today 225:74–79. https://doi.org/10.1016/j.cattod.2013.11.025

Lee HU, Lee SC, Cho SH, Son B, Lee SJ, Kim HJ, Lee J (2013) Highly visible-light active nanoporous TiO2 photocatalysts for efficient solar photocatalytic applications. Appl Catal B Environ 129:106–113. https://doi.org/10.1016/j.apcatb.2012.09.010

Zhang L, Xu L, Wang J, Cai J, Xu J, Zhou H, Zhong Y, Chen D, Zhang J, Cao CN (2012) Enhanced energy storage of a UV-irradiated three-dimensional nanostructured TiO2–Ni(OH)2 composite film and its electrochemical discharge in the dark. J Electroanal Chem 683:55–61. https://doi.org/10.1016/j.jelechem.2012.07.041

Rai AK, Anh LT, Gim J, Mathew V, Kang J, Paul BJ, Song J, Kim J (2013) Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochim Acta 90:112–118. https://doi.org/10.1016/j.electacta.2012.11.104

Yang X, Teng D, Liu B, Yu Y, Yang X (2011) Nanosized anatase titanium dioxide loaded porous carbon nanofiber webs as anode materials for lithium-ion batteries. Electrochem Commun 13(10):1098–1101. https://doi.org/10.1016/j.elecom.2011.07.007

Oh SW, Park SH, Sun YK (2006) Hydrothermal synthesis of nano-sized anatase TiO2 powders for lithium secondary anode materials. J Power Sources 161(2):1314–1318. https://doi.org/10.1016/j.jpowsour.2006.05.050

Subramanian V, Karki A, Gnanasekar KI, Eddy FP, Rambabu B (2006) Nanocrystalline TiO2 (anatase) for Li-ion batteries. J Power Sources 159(1):186–192. https://doi.org/10.1016/j.jpowsour.2006.04.027

Liu G, Qu J, Wang H (2013) Morphology-control synthesis and electrochemical performance of titanate and anatase TiO2. J Alloys Compd 578:345–348. https://doi.org/10.1016/j.jallcom.2013.06.044

Choi MG, Lee YG, Song SW, Kim KM (2010) Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles. Electrochim Acta 55(20):5975–5983. https://doi.org/10.1016/j.electacta.2010.05.052

Lin KS, Cheng HW, Chen WR, Wu JF (2010) Synthesis, characterization and application of anatase-typed titania nanoparticles. J Environ Eng Manag 20:69–76

Deedar N, Irfan A, Ishtiaq Q (2009) Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J Environ Sci 21:402–408

Li Z, Hong L, Guo B (2005) Physicochemical and electrochemical characterization of anatase titanium dioxide nanoparticles. J Power Sources 143(1-2):231–235. https://doi.org/10.1016/j.jpowsour.2004.11.056

Kun G (2007) Strongly intrinsic anharmonicity in the low-frequency Raman mode in nanocrystalline anatase TiO2. Physica B 398:33–37

Orendorz A, Brodyanski A, Losch J, Bai LH, Chen ZH, Le YK, Ziegler C, Gnaser H (2007) Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy. Surf Sci 601(18):4390–4394. https://doi.org/10.1016/j.susc.2007.04.127

Cheng G, Akhtar MS, Yang O-B, Stadler FJ (2013) Structure modification of anatase TiO2 nanomaterials-based photoanodes for efficient dye-sensitized solar cells. Electrochim Acta 113:527–535. https://doi.org/10.1016/j.electacta.2013.09.085

Exnar I, Kavan L, Huang SY, Gratzel M (1997) Novel 2 V rocking-chair lithium battery based on nano-crystalline titanium dioxide. J Power Sources 68(2):720–722. https://doi.org/10.1016/S0378-7753(96)02581-5

Kavan L, Tathousky J, Gratzel M, Shklover V, Zukal A (2000) Surfactant-templated TiO2 (anatase), characteristic features of lithium insertion electrochemistry in organized nanostructures. J Phys Chem B 104(50):12012–12020. https://doi.org/10.1021/jp003609v

Cava RJ, Murphy DW, Zahurak S, Santoro A, Roth RS (1984) The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4. J Solid State Chem 53(1):64–75. https://doi.org/10.1016/0022-4596(84)90228-7

Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, Graff G, Liu J (2009) Nanostructures and lithium electrochemical reactivity of lithium titanites and tinanium oxides. J Power Sources 192(2):588–598. https://doi.org/10.1016/j.jpowsour.2009.02.038

Kim J, Cho J (2007) Rate characteristics of anatase TiO2 nanotubes and nanorods for lithium battery anode materials at room temperature. J Electrochem Soc 154(6):A542–A546. https://doi.org/10.1149/1.2724756

Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Sci Rep 4:4043

Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS (1992) Review of sol-gel thin film formation. J Non-Cryst Solids 147-148:424–436. https://doi.org/10.1016/S0022-3093(05)80653-2

Tan L, Cao C, Yang H, Wang B, Li L (2013) Nitrogen-doped carbon coated TiO2 anode material for lithium-ion batteries. Mater Lett 109:195–198. https://doi.org/10.1016/j.matlet.2013.07.043

Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L (1999) Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc 146(4):1279–1289. https://doi.org/10.1149/1.1391759

Kanamura K, Yuasa K, Takehara Z (1987) Diffusion of lithium in the TiO2 cathode of a lithium battery. J Power Sources 20(1-2):127–134. https://doi.org/10.1016/0378-7753(87)80101-5

Cantao MP, Cisneros JI, Torresi RM (1994) Kinetic study of lithium electroinsertion in titanium oxide thin films. J Phys Chem 98(18):4865–4869. https://doi.org/10.1021/j100069a016

Lindstrom H, Sodergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S (1997) Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101(39):7717–7722. https://doi.org/10.1021/jp970490q

Lindstrom H, Sodergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S (1997) Li+ ion insertion in TiO2 (anatase). 1. Chronoamperometry on CVD films and nanoporous films. J Phys Chem B 101(39):7710–7716. https://doi.org/10.1021/jp970489r

Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118(28):6716–6723. https://doi.org/10.1021/ja954172l

Wagemaker M, Van de Krol R, Kentgens APM, van Well AA, Mulder FM (2001) Two phase morphology limits lithium diffusion in TiO2 (anatase): a 7Li MAS NMR study. J Am Chem Soc 123(46):11454–11461. https://doi.org/10.1021/ja0161148

Dylla AG, Lee JA, Stevenson KJ (2012) Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2(B). Langmuir 28(2012):2897–2903. https://doi.org/10.1021/la2037229

Zec N, Cvjeticanin N, Bester-Rogac M, Vranes M, Gadzuric S (2017) Electrochemical performance of anatase TiO2 nanotube arrays electrode in ionic liquid based electrolyte for lithium ion batteries. J Electrochem Soc 164(8):H5100–H5107. https://doi.org/10.1149/2.0051708jes

Tan L, Pan L, Cao C, Wang B, Li L (2014) Nitrogen-doped carbon coated TiO2 nanocomposites as anode material to improve cycle life for lithium-ion batteries. J Power Sources 253:193–200. https://doi.org/10.1016/j.jpowsour.2013.12.059

Liu Y, Yang Y (2016) Recent progress of TiO2-based anodes for Li ion batteries, J. Nano 2016:8123652

Fu Y, Ming H, Zhou Q, Jin L, Li X, Zheng J (2014) Nitrogen-doped carbon coating inside porous TiO2 using small nitrogen-containing molecules for improving performance of lithium-ion batteries. Electrochim Acta 134:478–485. https://doi.org/10.1016/j.electacta.2014.04.130

Li S, Ge P, Zhang C, Sun W, Hou H, Ji X (2017) The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: towards long-time cycling and superior rate sodium-ion battery cathode. J Power Sources 366:249–258. https://doi.org/10.1016/j.jpowsour.2017.09.032

Ge P, Cao X, Hou H, Li S, Ji X (2017) Rod like Sb2Se3 wrapped with carbon: the exploring of electrochemical properties in sodium-ion batteries. ACS Appl Mater Interfaces 9(40):34979–34989. https://doi.org/10.1021/acsami.7b10886

Ge P, Hou H, Ji X, Huang Z, Li S, Huang L (2018) Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. Mater Chem Phys 203:185–192. https://doi.org/10.1016/j.matchemphys.2017.10.003

Zhou W, Sun F, Pan K, Tian G, Jiang B, Ren Z, Tian C, Fu H (2011) Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv Func Mater 21(2011):1922–1930. https://doi.org/10.1002/adfm.201002535

Bai X, Li T, Qi YX, Wang YX, Yin LW, Li H, Lun N, Bai YJ (2016) One-step fabricating nitrogen-doped TiO2 nanoparticles coated with carbon to achieve excellent high-rate lithium storage performance. Electrochim Acta 187:389–396. https://doi.org/10.1016/j.electacta.2015.11.094

Bresser D, Kim G-T, Binetti E, Striccoli M, Comparelli R, Seidel S, Ozkaya D, Copley M, Bishop P, Paillard E, Passerini S (2015) Transforming anatase TiO2 nanorods into ultrafine nanoparticles for advanced electrochemical performance. J Power Sources 294:406–413. https://doi.org/10.1016/j.jpowsour.2015.06.089

Patra S, Davoisne C, Bouyanfif H, Foix D, Sauvage F (2015) Phase stability frustration on ultra-nanosized anatase TiO2. Sci Rep 5(1):10928. https://doi.org/10.1038/srep10928

Patra S, Davoisne C, Bruyre S, Bouyanfif H, Cassaignon S, Taberna P-L, Sauvage F (2013) Room-temperature synthesis of high surface area anatase TiO2 exhibiting a complete lithium insertion solid solution. Part Part Syst Charact 30(12):1093–1104. https://doi.org/10.1002/ppsc.201300178

Zaghib K, Mauger A, Gendron F, Julien CM (2008) Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem Mater 20(2):462–469. https://doi.org/10.1021/cm7027993

Zaghib K, Charest P, Dontigny M, Guerfi A, Lagac M, Mauger A, Kopec M, Julien CM (2010) LiFePO4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J Power Sources 195(24):8280–8288. https://doi.org/10.1016/j.jpowsour.2010.07.010

Trudeau ML, Laul D, Veillette R, Serventi AM, Mauger A, Julien CM, Zaghib K (2011) In situ high-resolution transmission electron microscopy synthesis observation of nanostructured carbon coated LiFePO4. J Power Sources 196:7386–7394

Guo BJ, Yu K, Fu H, Hua QQ, Qi RJ, Li HL, Song HL, Guo S, Zhu ZQ (2015) Firework-shaped TiO2 microspheres embedded with few-layer MoS2 as an anode material for excellent performance lithium-ion batteries. J Mater Chem A 3(12):6392–6401. https://doi.org/10.1039/C4TA06607C

Yu XY, Wu HB, Yu L, Ma FX, Lou XW (2015) Rutile TiO2 submicroboxes with superior lithium storage properties. Angew Chem 54(13):4001–4004. https://doi.org/10.1002/anie.201411353

Tian Q, Zhang Z, Yang L, Hirano SI (2015) Morphology-engineered and TiO2(B)-introduced anatase TiO2 as an advanced anode material for lithium-ion batteries. J Mater Chem A 3(28):14721–14730. https://doi.org/10.1039/C5TA03598H