Anatase TiO2 nanoparticles for lithium-ion batteries
Tóm tắt
Từ khóa
Tài liệu tham khảo
Han B, Kim KJ, Hwang BM, Kim SB, Park KW (2013) Single-crystalline rutile TiO2 nanowires for improved lithium ion intercalation properties. J Power Sources 222:225–229. https://doi.org/10.1016/j.jpowsour.2012.08.073
Liu CL, Wang Y, Zhang C, Li XS, Dong WS (2014) In situ synthesis of α-MoO3/graphene composites as anode materials for lithium ion battery. Mater Chem Phys 143(3):1111–1118. https://doi.org/10.1016/j.matchemphys.2013.11.011
Julien CM, Mauger A, Vijh A, Zaghib K (2016) Lithium batteries: science and technology. Springer, Cham, 630 pages. https://doi.org/10.1007/978-3-319-19108-9
Doh CH, Kim DH, Kim HS, Shin HM, Jeong YD, Moon SI, Jin BS, Eom SW, Kim HS, Kim KW, Oh DH, Veluchamy A (2008) Thermal and electrochemical behavior of C/LixCoO2 cell during safety test. J Power Sources 175(2):881–885. https://doi.org/10.1016/j.jpowsour.2007.09.102
Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38(2):183–197. https://doi.org/10.1016/S0008-6223(99)00141-4
Qiao H, Xiao L, Zhang L (2008) Phosphatization: a promising approach to enhance the performance of mesoporous TiO2 anode for lithium ion batteries. Electrochem Commun 10(4):616–620. https://doi.org/10.1016/j.elecom.2008.02.010
Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Net-structured NiO–C nanocomposite as Li-intercalation electrode material. Electrochem Commun 9(5):1180–1184. https://doi.org/10.1016/j.elecom.2007.01.014
Oh SW, Bang HJ, Bae YC, Sun YK (2007) Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J Power Sources 173(1):502–509. https://doi.org/10.1016/j.jpowsour.2007.04.087
Chen G, Rodriguez R, Fei L, Xu Y, Deng S, Smirnov S, Luo H (2014) A facile hydrothermal route to iron(III) with conductive additives as composite anode for lithium ion batteries. J Power Sources 259:227–232. https://doi.org/10.1016/j.jpowsour.2014.02.096
Xu Y, Jian G, Liu Y, Zhu Y, Zachariah MR, Wang C (2014) Superior electrochemical performance and structure evolution of mesoporous Fe2O3 anodes for lithium-ion batteries. Nano Energy 3:26–35. https://doi.org/10.1016/j.nanoen.2013.10.003
Oh HD, Lee SW, Kim SO, Lee JK (2013) Facile synthesis of carbon layer-entangled Fe2O3 clusters as anode materials for improved Li-ion batteries. J Power Sources 244:575–580. https://doi.org/10.1016/j.jpowsour.2013.01.120
Jiang Y, Zhang D, Li Y, Yuan T, Bahlawane N, Liang C, Sun W, Lu Y, Yan M (2014) AmorphousFe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy 4:23–30. https://doi.org/10.1016/j.nanoen.2013.12.001
Casino S, Di Lupo F, Francia C, Tuel A, Bodoardo S, Gerbaldi C (2014) Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO2 nanocrystalline Li-ion battery anodes. J Alloys Compd 594:114–121. https://doi.org/10.1016/j.jallcom.2014.01.111
Di Lupo F, Tuel A, Mendez V, Francia C, Meligrana G, Bodoardo S, Gerbaldi C (2014) Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes. Acta Mater 69:60–67. https://doi.org/10.1016/j.actamat.2014.01.057
Wang D, Wu X, Zhang Y, Wang J, Yan P, Zhang C, He D (2014) The influence oftheTiO2 particle size on the properties of Li4Ti5O12 anode material for lithium-ion battery. Ceram Int 40(2):3799–3804. https://doi.org/10.1016/j.ceramint.2013.09.038
Usui H, Wasada K, Shimizu M, Sakaguchi H (2013) TiO2/Si composites synthesized by sol–gel method and their improved electrode performance as Li-ion battery anodes. Electrochim Acta 111:575–580. https://doi.org/10.1016/j.electacta.2013.08.015
Yan Y, Wang J, Chang Q, Babikier M, Wang H, Li H, Yu Q, Gao S, Jiao S (2013) Fabrication of mesoporous TiO2 electrodes by chemical technique for dye-sensitized solar cells. Electrochim Acta 94:277–284. https://doi.org/10.1016/j.electacta.2013.02.019
Chen CL, Chang TW, Su SC, Teng H, Lee YL (2014) High performance solid-state dye-sensitized solar cells based on poly(acrylonitrile-co-vinyl acetate)/TiO2 nanoparticles redox electrolytes. J Power Sources 247:406–411. https://doi.org/10.1016/j.jpowsour.2013.08.117
Hong CK, Jung YH, Kim HJ, Park KH (2014) Electrochemical properties of TiO2 nanoparticle/nanorod composite photoanode for dye-sensitized solar cells. Curr Appl Phys 14(3):294–299. https://doi.org/10.1016/j.cap.2013.12.003
Xiong J, Yang B, Zhou C, Yang J, Duan H, Huang W, Zhang X, Xia X, Zhang L, Huang H, Gao Y (2014) Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer. Org Electron 15(4):835–843. https://doi.org/10.1016/j.orgel.2014.01.024
Umar AA, Nafisah S, Saad SKM, Tan ST, Balouch A, Salleh M, Oyama M (2014) Pori ferous microtablet of anatase TiO2 growth on an ITO surface for high efficiency dye-sensitized solar cells. Sol Energy Mater Sol Cells 122:174–182. https://doi.org/10.1016/j.solmat.2013.12.002
Zhang S, Zhang S, Peng B, Wang H, Yu H, Wang H, Peng F (2014) High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light. Electrochem Commun 40:24–27. https://doi.org/10.1016/j.elecom.2013.12.013
Lee HU, Lee SC, Lee SM, Lee JW, Kim HJ, Lee J (2013) Improved photocatalytic and antibacterial activities of three-dimensional polycrystalline anatase TiO2 photocatalysts. Appl Catal A 467:394–399. https://doi.org/10.1016/j.apcata.2013.07.042
Lee AC, Lin RH, Yang CY, Lin MH, Wang WY (2008) Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol–gel method. Mater Chem Phys 109(2-3):275–280. https://doi.org/10.1016/j.matchemphys.2007.11.016
Xie Y, Wu Z, Wu Q, Liu M, Piao L (2014) Effect of different base structures on the performance of the hierarchical TiO2 photocatalysts. Catal Today 225:74–79. https://doi.org/10.1016/j.cattod.2013.11.025
Lee HU, Lee SC, Cho SH, Son B, Lee SJ, Kim HJ, Lee J (2013) Highly visible-light active nanoporous TiO2 photocatalysts for efficient solar photocatalytic applications. Appl Catal B Environ 129:106–113. https://doi.org/10.1016/j.apcatb.2012.09.010
Zhang L, Xu L, Wang J, Cai J, Xu J, Zhou H, Zhong Y, Chen D, Zhang J, Cao CN (2012) Enhanced energy storage of a UV-irradiated three-dimensional nanostructured TiO2–Ni(OH)2 composite film and its electrochemical discharge in the dark. J Electroanal Chem 683:55–61. https://doi.org/10.1016/j.jelechem.2012.07.041
Rai AK, Anh LT, Gim J, Mathew V, Kang J, Paul BJ, Song J, Kim J (2013) Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochim Acta 90:112–118. https://doi.org/10.1016/j.electacta.2012.11.104
Yang X, Teng D, Liu B, Yu Y, Yang X (2011) Nanosized anatase titanium dioxide loaded porous carbon nanofiber webs as anode materials for lithium-ion batteries. Electrochem Commun 13(10):1098–1101. https://doi.org/10.1016/j.elecom.2011.07.007
Oh SW, Park SH, Sun YK (2006) Hydrothermal synthesis of nano-sized anatase TiO2 powders for lithium secondary anode materials. J Power Sources 161(2):1314–1318. https://doi.org/10.1016/j.jpowsour.2006.05.050
Subramanian V, Karki A, Gnanasekar KI, Eddy FP, Rambabu B (2006) Nanocrystalline TiO2 (anatase) for Li-ion batteries. J Power Sources 159(1):186–192. https://doi.org/10.1016/j.jpowsour.2006.04.027
Liu G, Qu J, Wang H (2013) Morphology-control synthesis and electrochemical performance of titanate and anatase TiO2. J Alloys Compd 578:345–348. https://doi.org/10.1016/j.jallcom.2013.06.044
Choi MG, Lee YG, Song SW, Kim KM (2010) Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles. Electrochim Acta 55(20):5975–5983. https://doi.org/10.1016/j.electacta.2010.05.052
Lin KS, Cheng HW, Chen WR, Wu JF (2010) Synthesis, characterization and application of anatase-typed titania nanoparticles. J Environ Eng Manag 20:69–76
Deedar N, Irfan A, Ishtiaq Q (2009) Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J Environ Sci 21:402–408
Li Z, Hong L, Guo B (2005) Physicochemical and electrochemical characterization of anatase titanium dioxide nanoparticles. J Power Sources 143(1-2):231–235. https://doi.org/10.1016/j.jpowsour.2004.11.056
Kun G (2007) Strongly intrinsic anharmonicity in the low-frequency Raman mode in nanocrystalline anatase TiO2. Physica B 398:33–37
Orendorz A, Brodyanski A, Losch J, Bai LH, Chen ZH, Le YK, Ziegler C, Gnaser H (2007) Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy. Surf Sci 601(18):4390–4394. https://doi.org/10.1016/j.susc.2007.04.127
Cheng G, Akhtar MS, Yang O-B, Stadler FJ (2013) Structure modification of anatase TiO2 nanomaterials-based photoanodes for efficient dye-sensitized solar cells. Electrochim Acta 113:527–535. https://doi.org/10.1016/j.electacta.2013.09.085
Exnar I, Kavan L, Huang SY, Gratzel M (1997) Novel 2 V rocking-chair lithium battery based on nano-crystalline titanium dioxide. J Power Sources 68(2):720–722. https://doi.org/10.1016/S0378-7753(96)02581-5
Kavan L, Tathousky J, Gratzel M, Shklover V, Zukal A (2000) Surfactant-templated TiO2 (anatase), characteristic features of lithium insertion electrochemistry in organized nanostructures. J Phys Chem B 104(50):12012–12020. https://doi.org/10.1021/jp003609v
Cava RJ, Murphy DW, Zahurak S, Santoro A, Roth RS (1984) The crystal structures of the lithium-inserted metal oxides Li0.5TiO2 anatase, LiTi2O4. J Solid State Chem 53(1):64–75. https://doi.org/10.1016/0022-4596(84)90228-7
Yang Z, Choi D, Kerisit S, Rosso KM, Wang D, Zhang J, Graff G, Liu J (2009) Nanostructures and lithium electrochemical reactivity of lithium titanites and tinanium oxides. J Power Sources 192(2):588–598. https://doi.org/10.1016/j.jpowsour.2009.02.038
Kim J, Cho J (2007) Rate characteristics of anatase TiO2 nanotubes and nanorods for lithium battery anode materials at room temperature. J Electrochem Soc 154(6):A542–A546. https://doi.org/10.1149/1.2724756
Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Sci Rep 4:4043
Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS (1992) Review of sol-gel thin film formation. J Non-Cryst Solids 147-148:424–436. https://doi.org/10.1016/S0022-3093(05)80653-2
Tan L, Cao C, Yang H, Wang B, Li L (2013) Nitrogen-doped carbon coated TiO2 anode material for lithium-ion batteries. Mater Lett 109:195–198. https://doi.org/10.1016/j.matlet.2013.07.043
Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L (1999) Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc 146(4):1279–1289. https://doi.org/10.1149/1.1391759
Kanamura K, Yuasa K, Takehara Z (1987) Diffusion of lithium in the TiO2 cathode of a lithium battery. J Power Sources 20(1-2):127–134. https://doi.org/10.1016/0378-7753(87)80101-5
Cantao MP, Cisneros JI, Torresi RM (1994) Kinetic study of lithium electroinsertion in titanium oxide thin films. J Phys Chem 98(18):4865–4869. https://doi.org/10.1021/j100069a016
Lindstrom H, Sodergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S (1997) Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101(39):7717–7722. https://doi.org/10.1021/jp970490q
Lindstrom H, Sodergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S (1997) Li+ ion insertion in TiO2 (anatase). 1. Chronoamperometry on CVD films and nanoporous films. J Phys Chem B 101(39):7710–7716. https://doi.org/10.1021/jp970489r
Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118(28):6716–6723. https://doi.org/10.1021/ja954172l
Wagemaker M, Van de Krol R, Kentgens APM, van Well AA, Mulder FM (2001) Two phase morphology limits lithium diffusion in TiO2 (anatase): a 7Li MAS NMR study. J Am Chem Soc 123(46):11454–11461. https://doi.org/10.1021/ja0161148
Dylla AG, Lee JA, Stevenson KJ (2012) Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2(B). Langmuir 28(2012):2897–2903. https://doi.org/10.1021/la2037229
Zec N, Cvjeticanin N, Bester-Rogac M, Vranes M, Gadzuric S (2017) Electrochemical performance of anatase TiO2 nanotube arrays electrode in ionic liquid based electrolyte for lithium ion batteries. J Electrochem Soc 164(8):H5100–H5107. https://doi.org/10.1149/2.0051708jes
Tan L, Pan L, Cao C, Wang B, Li L (2014) Nitrogen-doped carbon coated TiO2 nanocomposites as anode material to improve cycle life for lithium-ion batteries. J Power Sources 253:193–200. https://doi.org/10.1016/j.jpowsour.2013.12.059
Liu Y, Yang Y (2016) Recent progress of TiO2-based anodes for Li ion batteries, J. Nano 2016:8123652
Fu Y, Ming H, Zhou Q, Jin L, Li X, Zheng J (2014) Nitrogen-doped carbon coating inside porous TiO2 using small nitrogen-containing molecules for improving performance of lithium-ion batteries. Electrochim Acta 134:478–485. https://doi.org/10.1016/j.electacta.2014.04.130
Li S, Ge P, Zhang C, Sun W, Hou H, Ji X (2017) The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: towards long-time cycling and superior rate sodium-ion battery cathode. J Power Sources 366:249–258. https://doi.org/10.1016/j.jpowsour.2017.09.032
Ge P, Cao X, Hou H, Li S, Ji X (2017) Rod like Sb2Se3 wrapped with carbon: the exploring of electrochemical properties in sodium-ion batteries. ACS Appl Mater Interfaces 9(40):34979–34989. https://doi.org/10.1021/acsami.7b10886
Ge P, Hou H, Ji X, Huang Z, Li S, Huang L (2018) Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. Mater Chem Phys 203:185–192. https://doi.org/10.1016/j.matchemphys.2017.10.003
Zhou W, Sun F, Pan K, Tian G, Jiang B, Ren Z, Tian C, Fu H (2011) Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance. Adv Func Mater 21(2011):1922–1930. https://doi.org/10.1002/adfm.201002535
Bai X, Li T, Qi YX, Wang YX, Yin LW, Li H, Lun N, Bai YJ (2016) One-step fabricating nitrogen-doped TiO2 nanoparticles coated with carbon to achieve excellent high-rate lithium storage performance. Electrochim Acta 187:389–396. https://doi.org/10.1016/j.electacta.2015.11.094
Bresser D, Kim G-T, Binetti E, Striccoli M, Comparelli R, Seidel S, Ozkaya D, Copley M, Bishop P, Paillard E, Passerini S (2015) Transforming anatase TiO2 nanorods into ultrafine nanoparticles for advanced electrochemical performance. J Power Sources 294:406–413. https://doi.org/10.1016/j.jpowsour.2015.06.089
Patra S, Davoisne C, Bouyanfif H, Foix D, Sauvage F (2015) Phase stability frustration on ultra-nanosized anatase TiO2. Sci Rep 5(1):10928. https://doi.org/10.1038/srep10928
Patra S, Davoisne C, Bruyre S, Bouyanfif H, Cassaignon S, Taberna P-L, Sauvage F (2013) Room-temperature synthesis of high surface area anatase TiO2 exhibiting a complete lithium insertion solid solution. Part Part Syst Charact 30(12):1093–1104. https://doi.org/10.1002/ppsc.201300178
Zaghib K, Mauger A, Gendron F, Julien CM (2008) Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem Mater 20(2):462–469. https://doi.org/10.1021/cm7027993
Zaghib K, Charest P, Dontigny M, Guerfi A, Lagac M, Mauger A, Kopec M, Julien CM (2010) LiFePO4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J Power Sources 195(24):8280–8288. https://doi.org/10.1016/j.jpowsour.2010.07.010
Trudeau ML, Laul D, Veillette R, Serventi AM, Mauger A, Julien CM, Zaghib K (2011) In situ high-resolution transmission electron microscopy synthesis observation of nanostructured carbon coated LiFePO4. J Power Sources 196:7386–7394
Guo BJ, Yu K, Fu H, Hua QQ, Qi RJ, Li HL, Song HL, Guo S, Zhu ZQ (2015) Firework-shaped TiO2 microspheres embedded with few-layer MoS2 as an anode material for excellent performance lithium-ion batteries. J Mater Chem A 3(12):6392–6401. https://doi.org/10.1039/C4TA06607C
Yu XY, Wu HB, Yu L, Ma FX, Lou XW (2015) Rutile TiO2 submicroboxes with superior lithium storage properties. Angew Chem 54(13):4001–4004. https://doi.org/10.1002/anie.201411353