Analyzing variations in life-history traits of Pacific salmon in the context of Dynamic Energy Budget (DEB) theory

Journal of Sea Research - Tập 66 - Trang 424-433 - 2011
Laure Pecquerie1, Leah R. Johnson1, Sebastiaan A.L.M. Kooijman2, Roger M. Nisbet1
1University of California Santa Barbara, Department of Ecology, Evolution and Marine Biology, Santa Barbara, CA 93106-9620, USA
2Vrije Universiteit, Department of Theoretical Biology, de Boeleaan 1087, 1081 HV, Amsterdam, The Netherlands

Tài liệu tham khảo

Anderson, 2006, Instream flow needs in streams and rivers: the importance of understanding ecological dynamics, Front. Ecol. Environ., 4, 309, 10.1890/1540-9295(2006)4[309:IFNISA]2.0.CO;2 Aydin, 2005, Linking oceanic food webs to coastal production and growth rates of Pacific salmon (Oncorhynchus spp.), using models on three scales, Deep Sea Res. Part II, 52, 757, 10.1016/j.dsr2.2004.12.017 Ballantyne, 2003, The importance of dietary phosphorus and highly unsaturated fatty acids for sockeye (Oncorhynchus nerka) growth in Lake Washington — a bioenergetics approach, Can. J. Fish. Aquat. Sci., 60, 12, 10.1139/f02-166 Beacham, 1990, Temperature, egg size, and development of embryos and alevins of 5 species of pacific salmon — a comparative-analysis, Trans. Am. Fish. Soc., 119, 927, 10.1577/1548-8659(1990)119<0927:TESADO>2.3.CO;2 Beacham, 1993, Fecundity and egg size variation in North-American Pacific salmon (Oncorhynchus), J. Fish Biol., 42, 485, 10.1111/j.1095-8649.1993.tb00354.x Beauchamp, 2004, Spatial-temporal dynamics of early feeding demand and food supply for sockeye salmon fry in Lake Washington, Trans. Am. Fish. Soc., 133, 1014, 10.1577/T03-093.1 Beckman, 2007, State-dependent life history plasticity in Sacramento River winter-run chinook salmon (Oncorhynchus tshawytscha): interactions among photoperiod and growth modulate smolting and early male maturation, Can. J. Fish. Aquat. Sci., 64, 256, 10.1139/f07-001 Brodeur, 1992, Food consumption of juvenile coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha) on the continental shelf off Washington and Oregon, Can. J. Fish. Aquat. Sci., 49, 1670, 10.1139/f92-186 Cech, 1999, 74 Flye-Sainte-Marie, 2009, A quantitative estimation of the energetic cost of brown ring disease in the Manila clam using Dynamic Energy Budget theory, J. Sea Res., 62, 114, 10.1016/j.seares.2009.01.007 Groot, 1995 Hendry, 2001, Breeding location choice in salmon: causes (habitat, competition, body size, energy stores) and consequences (life span, energy stores), Oikos, 93, 407, 10.1034/j.1600-0706.2001.930306.x Kaushal, 2010, Rising stream and river temperatures in the United States, Front. Ecol. Environ., 8, 461, 10.1890/090037 Kooijman, 2009, What the egg can tell about its hen: Embryonic development on the basis of dynamic energy budgets, J. Math. Biol., 58, 377, 10.1007/s00285-008-0195-x Kooijman, 2010 Kooijman, 2008, From food-dependent statistics to metabolic parameters, a practical guide to the use of Dynamic Energy Budget theory, Biol. Rev., 83, 533, 10.1111/j.1469-185X.2008.00053.x Krkosek, 2005, Transmission dynamics of parasitic sea lice from farm to wild salmon, Proc. R. Soc. B, 272, 689, 10.1098/rspb.2004.3027 Lika, 2011, The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model I: philosophy and approach, J. Sea Res., 66, 270, 10.1016/j.seares.2011.07.010 Macneale, 2010, Pesticides, aquatic food webs, and the conservation of Pacific salmon, Front. Ecol. Environ., 8, 475, 10.1890/090142 Madenjian, 2004, Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model, Can. J. Fish. Aquat. Sci., 61, 627, 10.1139/f04-033 Mangel, 1994, Climate-change and salmonid life-history variation, Deep Sea Res. Part II, 41, 75, 10.1016/0967-0645(94)90063-9 Mangel, 2008, Combining proximate and ultimate approaches to understand life history variation in salmonids with application to fisheries, conservation, and aquaculture, Bull. Mar. Sci., 83, 107 Muller, 2010, Sublethal toxicant effects with dynamic energy budget theory: model formulation, Ecotoxicology, 19, 48, 10.1007/s10646-009-0385-3 Nisbet, 2000, From molecules to ecosystems through dynamic energy budget models, J. Anim. Ecol., 69, 913, 10.1046/j.1365-2656.2000.00448.x Parker, 1959, A concept of growth in fishes, J. Fish. Res. Board Can., 16, 721, 10.1139/f59-052 Pecquerie, 2009, Modeling fish growth and reproduction in the context of the Dynamic Energy Budget theory to predict environmental impact on anchovy spawning duration, J. Sea Res., 62, 93, 10.1016/j.seares.2009.06.002 Peterseni, 2008, An overview of methods for developing bioenergetic and life history models for rare and endangered species, Trans. Am. Fish. Soc., 137, 244, 10.1577/T05-045.1 Quinn, 2005 Quinn, 1995, The influence of life history trade-offs and the size of incubation gravels on egg size variation in sockeye salmon (Oncorhynchus nerka), Oikos, 74, 425, 10.2307/3545987 Rand, 1998, Swim speeds and energy use of upriver-migrating sockeye salmon (Oncorhynchus nerka): simulating metabolic power and assessing risk of energy depletion, Can. J. Fish. Aquat. Sci., 55, 1832, 10.1139/f98-068 Rombough, 1985, Initial egg weight, time to maximum alevin wet weight, and optimal ponding times for Chinook Salmon (Oncorynchus tshawytscha), Can. J. Fish. Aquat. Sci., 42, 287, 10.1139/f85-036 Satterthwaite, 2009, Steelhead life history on California's central coast: insights from a state-dependent model, Trans. Am. Fish. Soc., 138, 532, 10.1577/T08-164.1 Sousa, 2010, Dynamic energy budget theory restores coherence in biology Introduction, Philos. Trans. R. Soc. B, 365, 3413, 10.1098/rstb.2010.0166 Stewart, 1991, Predation and production by Salmonine Fishes in Lake-Michigan, 1978–88, Can. J. Fish. Aquat. Sci., 48, 909, 10.1139/f91-107 Thorpe, 1998, Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L, Evol. Ecol., 12, 581, 10.1023/A:1022351814644 Trudel, 2004, Modeling the oxygen consumption rates in pacific salmon and steelhead: an assessment of current models and practices, Trans. Am. Fish. Soc., 133, 326, 10.1577/02-116 Trudel, 2005, Indicators of energetic status in juvenile coho salmon and chinook salmon, N. Am. J. Fish. Manage., 25, 374, 10.1577/M04-018.1 van der Veer, 2003, Body size scaling relationships in flatfish as predicted by Dynamic Energy Budgets (DEB theory): implications for recruitment, J. Sea Res., 50, 257, 10.1016/j.seares.2003.05.001 Weatherley, 1995, Growth, 101