Analyzing variations in life-history traits of Pacific salmon in the context of Dynamic Energy Budget (DEB) theory
Tài liệu tham khảo
Anderson, 2006, Instream flow needs in streams and rivers: the importance of understanding ecological dynamics, Front. Ecol. Environ., 4, 309, 10.1890/1540-9295(2006)4[309:IFNISA]2.0.CO;2
Aydin, 2005, Linking oceanic food webs to coastal production and growth rates of Pacific salmon (Oncorhynchus spp.), using models on three scales, Deep Sea Res. Part II, 52, 757, 10.1016/j.dsr2.2004.12.017
Ballantyne, 2003, The importance of dietary phosphorus and highly unsaturated fatty acids for sockeye (Oncorhynchus nerka) growth in Lake Washington — a bioenergetics approach, Can. J. Fish. Aquat. Sci., 60, 12, 10.1139/f02-166
Beacham, 1990, Temperature, egg size, and development of embryos and alevins of 5 species of pacific salmon — a comparative-analysis, Trans. Am. Fish. Soc., 119, 927, 10.1577/1548-8659(1990)119<0927:TESADO>2.3.CO;2
Beacham, 1993, Fecundity and egg size variation in North-American Pacific salmon (Oncorhynchus), J. Fish Biol., 42, 485, 10.1111/j.1095-8649.1993.tb00354.x
Beauchamp, 2004, Spatial-temporal dynamics of early feeding demand and food supply for sockeye salmon fry in Lake Washington, Trans. Am. Fish. Soc., 133, 1014, 10.1577/T03-093.1
Beckman, 2007, State-dependent life history plasticity in Sacramento River winter-run chinook salmon (Oncorhynchus tshawytscha): interactions among photoperiod and growth modulate smolting and early male maturation, Can. J. Fish. Aquat. Sci., 64, 256, 10.1139/f07-001
Brodeur, 1992, Food consumption of juvenile coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha) on the continental shelf off Washington and Oregon, Can. J. Fish. Aquat. Sci., 49, 1670, 10.1139/f92-186
Cech, 1999, 74
Flye-Sainte-Marie, 2009, A quantitative estimation of the energetic cost of brown ring disease in the Manila clam using Dynamic Energy Budget theory, J. Sea Res., 62, 114, 10.1016/j.seares.2009.01.007
Groot, 1995
Hendry, 2001, Breeding location choice in salmon: causes (habitat, competition, body size, energy stores) and consequences (life span, energy stores), Oikos, 93, 407, 10.1034/j.1600-0706.2001.930306.x
Kaushal, 2010, Rising stream and river temperatures in the United States, Front. Ecol. Environ., 8, 461, 10.1890/090037
Kooijman, 2009, What the egg can tell about its hen: Embryonic development on the basis of dynamic energy budgets, J. Math. Biol., 58, 377, 10.1007/s00285-008-0195-x
Kooijman, 2010
Kooijman, 2008, From food-dependent statistics to metabolic parameters, a practical guide to the use of Dynamic Energy Budget theory, Biol. Rev., 83, 533, 10.1111/j.1469-185X.2008.00053.x
Krkosek, 2005, Transmission dynamics of parasitic sea lice from farm to wild salmon, Proc. R. Soc. B, 272, 689, 10.1098/rspb.2004.3027
Lika, 2011, The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model I: philosophy and approach, J. Sea Res., 66, 270, 10.1016/j.seares.2011.07.010
Macneale, 2010, Pesticides, aquatic food webs, and the conservation of Pacific salmon, Front. Ecol. Environ., 8, 475, 10.1890/090142
Madenjian, 2004, Evaluation of a chinook salmon (Oncorhynchus tshawytscha) bioenergetics model, Can. J. Fish. Aquat. Sci., 61, 627, 10.1139/f04-033
Mangel, 1994, Climate-change and salmonid life-history variation, Deep Sea Res. Part II, 41, 75, 10.1016/0967-0645(94)90063-9
Mangel, 2008, Combining proximate and ultimate approaches to understand life history variation in salmonids with application to fisheries, conservation, and aquaculture, Bull. Mar. Sci., 83, 107
Muller, 2010, Sublethal toxicant effects with dynamic energy budget theory: model formulation, Ecotoxicology, 19, 48, 10.1007/s10646-009-0385-3
Nisbet, 2000, From molecules to ecosystems through dynamic energy budget models, J. Anim. Ecol., 69, 913, 10.1046/j.1365-2656.2000.00448.x
Parker, 1959, A concept of growth in fishes, J. Fish. Res. Board Can., 16, 721, 10.1139/f59-052
Pecquerie, 2009, Modeling fish growth and reproduction in the context of the Dynamic Energy Budget theory to predict environmental impact on anchovy spawning duration, J. Sea Res., 62, 93, 10.1016/j.seares.2009.06.002
Peterseni, 2008, An overview of methods for developing bioenergetic and life history models for rare and endangered species, Trans. Am. Fish. Soc., 137, 244, 10.1577/T05-045.1
Quinn, 2005
Quinn, 1995, The influence of life history trade-offs and the size of incubation gravels on egg size variation in sockeye salmon (Oncorhynchus nerka), Oikos, 74, 425, 10.2307/3545987
Rand, 1998, Swim speeds and energy use of upriver-migrating sockeye salmon (Oncorhynchus nerka): simulating metabolic power and assessing risk of energy depletion, Can. J. Fish. Aquat. Sci., 55, 1832, 10.1139/f98-068
Rombough, 1985, Initial egg weight, time to maximum alevin wet weight, and optimal ponding times for Chinook Salmon (Oncorynchus tshawytscha), Can. J. Fish. Aquat. Sci., 42, 287, 10.1139/f85-036
Satterthwaite, 2009, Steelhead life history on California's central coast: insights from a state-dependent model, Trans. Am. Fish. Soc., 138, 532, 10.1577/T08-164.1
Sousa, 2010, Dynamic energy budget theory restores coherence in biology Introduction, Philos. Trans. R. Soc. B, 365, 3413, 10.1098/rstb.2010.0166
Stewart, 1991, Predation and production by Salmonine Fishes in Lake-Michigan, 1978–88, Can. J. Fish. Aquat. Sci., 48, 909, 10.1139/f91-107
Thorpe, 1998, Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L, Evol. Ecol., 12, 581, 10.1023/A:1022351814644
Trudel, 2004, Modeling the oxygen consumption rates in pacific salmon and steelhead: an assessment of current models and practices, Trans. Am. Fish. Soc., 133, 326, 10.1577/02-116
Trudel, 2005, Indicators of energetic status in juvenile coho salmon and chinook salmon, N. Am. J. Fish. Manage., 25, 374, 10.1577/M04-018.1
van der Veer, 2003, Body size scaling relationships in flatfish as predicted by Dynamic Energy Budgets (DEB theory): implications for recruitment, J. Sea Res., 50, 257, 10.1016/j.seares.2003.05.001
Weatherley, 1995, Growth, 101