Phân Tích Việc Sử Dụng Hiệu Quả Kính Thực Tế Tăng Cường Trong Các Khóa Học Thí Nghiệm Vật Lý Đại Học Với Chủ Đề Ví Dụ Về Sự Phân Cực Quang Học

Daniel Laumann1,2, Paul Schlummer1, Adrian Abazi3, Rasmus Borkamp4, Jonas Lauströer4, Wolfram Pernice2,5, Carsten Schuck2,3, Reinhard Schulz-Schaeffer4, Stefan Heusler1
1Institute of Physics Education, University of Münster, Münster, Germany
2Institute of Physics, University of Münster, Münster, Germany
3Department for Quantum Technology, University of Münster, Münster, Germany
4Department Design, HAW Hamburg, Hamburg, Germany
5Kurchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany

Tóm tắt

Trong gần hai thập kỷ qua, thực tế tăng cường (AR) đã tìm thấy nhiều ứng dụng đa dạng trong giáo dục, đặc biệt là trong giáo dục khoa học, nơi mà hiệu quả của nó đã được hỗ trợ bởi các lý thuyết liên quan và nhiều nghiên cứu thực nghiệm. Tuy nhiên, các nghiên cứu trước đây đã chỉ ra thiếu sót trong nghiên cứu: Trong khi công nghệ AR dường như có ảnh hưởng đến các biến số liên quan đến học tập, thì tại thời điểm nghiên cứu này, chỉ có rất ít nghiên cứu về việc sử dụng kính AR trong lĩnh vực vật lý, một lĩnh vực mà công nghệ này có vẻ hứa hẹn đặc biệt trong bối cảnh các thí nghiệm trong phòng thí nghiệm. Do đó, nghiên cứu hiện tại sử dụng thiết kế so sánh thực nghiệm để điều tra câu hỏi về cách mà việc sử dụng kính AR trong một thí nghiệm vật lý (so với trong một môi trường học tập không có AR) ảnh hưởng đến động lực học tập của sinh viên, khối lượng nhận thức trong quá trình học tập và thành tích học tập của họ. Nghiên cứu (kích thước mẫu N = 75) đã điều tra tác động của kính AR trong một thí nghiệm vật lý về sự phân cực quang học. Kết quả phù hợp với các nghiên cứu trước đó, cho thấy động lực học tập gia tăng ở những người học sử dụng ứng dụng AR. Tuy nhiên, việc không có sự khác biệt đáng kể về khối lượng nhận thức giữa người học có AR và không có AR là điều bất ngờ. Mặc dù có những kỳ vọng dựa trên sự tiếp giáp không gian, người học với AR không cho thấy lợi thế nào về thành tích học tập, điều này thách thức các phân tích tổng hợp hiện có trong giáo dục vật lý. Những phát hiện này gợi ý rằng cần phải chuyển đổi trọng tâm từ các đặc điểm bề mặt, như công nghệ AR cụ thể, sang thiết kế nội dung của các ứng dụng AR. Các nghiên cứu trong tương lai nên phân tích cấu trúc sâu của các ứng dụng AR, xác định những đặc điểm thuận lợi cho việc học.

Từ khóa

#Thực tế tăng cường; Kính AR; Giáo dục vật lý; Động lực học tập; Khối lượng nhận thức; Thành tích học tập

Tài liệu tham khảo

Albus, P., Vogt, A., & Seufert, T. (2021). Signaling in virtual reality influences learning outcome and cognitive load. Computers & Education, 166, 104154. https://doi.org/10.1016/j.compedu.2021.104154 Altmeyer, K., Kapp, S., Thees, M., Malone, S., Kuhn, J., & Brünken, R. (2020). The use of augmented reality to foster conceptual knowledge acquisition in STEM laboratory courses – Theoretical background and empirical results. British Journal of Educational Technology, 51, 611–628. https://doi.org/10.1111/bjet.12900 Antonietti, A., Rasi, C., Imperio, E., & Sacco, M. (2000). The representation of virtual reality in education. Education and Information Technologies, 5, 317–327. https://doi.org/10.1023/A:1012057608694 Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6, 355–385. https://doi.org/10.1162/pres.1997.6.4.355 Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21, 34–47. https://doi.org/10.1109/38.963459 Bacca, J., Baldiris, S., Fabregat, R., Graf, S., & Kinshuk. (2014). Augmented reality trends in education: A systematic review of research and applications. Educational Technology & Society, 17, 133–149. Backhaus, J., Huth, K., Entwistle, A., Homayounfar, K., & Koenig, S. (2019). Digital affinity in medical students influences learning outcome: A cluster analytical design comparing vodcast with traditional lecture. Journal of Surgical Education, 76, 711–719. https://doi.org/10.1016/j.jsurg.2018.12.001 Binder, J. S., Scholz, M., Ellmann, S., Uder, M., Grützmann, R., Weber, G. F., et al. (2021). Cinematic rendering in anatomy: A crossover study comparing a novel 3D reconstruction technique to conventional computed tomography. Anatomical Sciences Education, 14, 22–31. https://doi.org/10.1002/ase.1989 Buchner, J., Buntins, K., & Kerres, M. (2022). The impact of augmented reality on cognitive load and performance: A systematic review. Journal of Computer Assisted Learning, 38, 285–303. https://doi.org/10.1111/jcal.12617 Buchner, J., & Kerres, M. (2023). Media comparison studies dominate comparative research on augmented reality in education. Computers & Education, 195, 104711. https://doi.org/10.1016/j.compedu.2022.104711 Cai, Y., Pan, Z., & Liu, M. (2022). Augmented reality technology in language learning: A meta-analysis. Journal of Computer Assisted Learning, 38, 929–945. https://doi.org/10.1111/jcal.12661 Cao, W., & Yu, Z. (2023). The impact of augmented reality on student attitudes, motivation, and learning achievements – a meta-analysis (2016–2023). Humanities & Social Sciences Communications, 10, 352. https://doi.org/10.1057/s41599-023-01852-2 Chang, H.-Y., Binali, T., Liang, J.-C., Chiou, G.-L., Cheng, K.-H., Lee, S.W.-Y., et al. (2022). Ten years of augmented reality in education: A meta-analysis of (quasi-)experimental studies to investigate the impact. Computers & Education, 191, 104641. https://doi.org/10.1016/j.compedu.2022.104641 Cimpian, J. R., Kim, T. H., & McDermott, Z. T. (2020). Understanding persistent gender gaps in STEM. Science, 368, 1317–1319. https://doi.org/10.1126/science.aba7377 Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Erlbaum. Conole, G., & Dyke, M. (2004). What are the affordances of information and communication technologies? ALT-J Research in Learning Technology, 12, 113–124. https://doi.org/10.1080/0968776042000216183 Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78, 98–104. https://doi.org/10.1037/0021-9010.78.1.98 Csikszentmihalyi, M. (1975). Play and unique prizes. Journal of Humanistic Psychology, 15, 41–63. https://doi.org/10.1177/002216787501500306 Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. Harper-Perennial. Dalgarno, B., & Lee, M. J. W. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41, 10–32. https://doi.org/10.1111/j.1467-8535.2009.01038.x Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18, 7–22. https://doi.org/10.1007/s10956-008-9119-1 Elford, D., Lancaster, S. J., & Jones, G. A. (2022). Exploring the effect of augmented reality on cognitive load, attitude, spatial ability, and stereochemical perception. Journal of Science Education and Technology, 31, 322–339. https://doi.org/10.1007/s10956-022-09957-0 Feldon, D. F., Jeong, S., & Clark, R. E. (2021). Fifteen common but questionable principles of multimedia learning. In R. E. Mayer, & L. Fiorella (eds.), The Cambridge handbook of multimedia learning (pp. 25–40). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108894333.005 Ginns, P. (2006). Integrating information: A meta-analysis of the spatial contiguity and temporal contiguity effects. Learning and Instruction, 16, 511–525. https://doi.org/10.1016/j.learninstruc.2006.10.001 Hamari, J., Koivisto, & Sarsa, H. (2014). Does gamification work? A literature review of empirical studies on gamification. In R. H. Sprague, Jr. (eds.), 47th Hawaii International Conference on System Sciences (pp. 3025–3034). Los Alamitos: IEEE Computer Society. https://doi.org/10.1109/HICSS.2014.377 Holmes, N. G., Keep, B., & Wiemann, C. E. (2020). Developing scientific decision making by structuring and supporting student agency. Physical Review Physics Education Research, 16, 010109. https://doi.org/10.1103/PhysRevPhysEducRes.16.010109 Holmes, N. G., & Wiemann, C. E. (2018). Introductory physics labs: We can do better. Physics Today, 71, 38–45. https://doi.org/10.1063/PT.3.3816 Ibáñez, M.-B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109–123. https://doi.org/10.1016/j.compedu.2018.05.002 Ibáñez, M. B., Di Serio, Á., Villarán, D., & Delgado Kloos, C. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1–13. https://doi.org/10.1016/j.compedu.2013.09.004 Jin, F., & Divitini, M. (2020). Affinity for technology and teenagers’ learning intentions. In A. Robins, A. Moskal, A. J. Ko, & R. McCauley (eds.), Proceedings of the 2020 ACM conference on international computing education research (pp. 48–55). New York: Association for Computing Machinery. https://doi.org/10.1145/3372782.3406269 Kapp, S., Thees, M., Strzys, M. P., Beil, F., Kuhn, J., Amiraslanov, O., et al. (2019). Augmenting Kirchhoff’s laws: Using augmented reality and smartglasses to enhance conceptual electrical experiments for high school students. The Physics Teacher, 57, 52–53. https://doi.org/10.1119/1.5084931 Karrer, K., Glaser, C., Clemens, C., & Bruder, C. (2009). Technikaffinität erfassen – der Fragebogen TA-EG. In A. Lichtenstein, C. Stößel, & C. Clemens (Eds.), Der Mensch im Mittelpunkt technischer Systeme (pp. 196–201). VDI. Klepsch, M., Schmitz, F., & Seufert, T. (2017). Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Frontiers in Psychology, 8, 1997. https://doi.org/10.3389/fpsyg.2017.01997 Laun, M., Czech, C., Hartmann, U., Terschüren, C., Harth, V., Karamanidis, K., et al. (2022). The acceptance of smart glasses used as side-by-side instructions for complex assembly tasks is highly dependent on the device model. International Journal of Industrial Ergonomics, 90, 103316. https://doi.org/10.1016/j.ergon.2022.103316 Malone, S. Garzón, J., & Kuhn, J. (2023).Three decades of augmented reality in education: A second-order meta-analysis and research synthesis. OSF Preprints. https://doi.org/10.31219/osf.io/amw4t Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity. In R. E. Mayer (eds.), The Cambridge handbook of multimedia learning (pp. 279–315). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.015 Mayer, R. E. (2009). Multimedia learning. Cambridge University Press. https://doi.org/10.1017/CBO9780511811678 McAuley, E., Duncan, T., & Tammen, V. V. (1989). Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: A confirmatory factor analysis. Research Quarterly for Exercise and Sport, 69, 48–58. https://doi.org/10.1080/02701367.1989.10607413 Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77, 1321–1329. Mills, L., Knezek, G., Tyler-Wood, R., Christensen, R., & Dunn-Rankin, P. (2013). Exploring the relationship between middle school student technology affinity and attitudes toward school. In R. McBridge, & M. Searson (eds.), Proceedings of SITE 2013 – Society for Information Technology & Teacher Education International Conference (pp. 2269–2272). New Orleans: Association for the Advancement of Computing in Education. Retrieved from: https://www.learntechlib.org/p/48445/ Radu, I. (2014). Augmented reality in education: A meta-review and cross-media analysis. Personal Ubiquitous Computing, 18, 1533–1543. https://doi.org/10.1007/s00779-013-0747-y Schlummer, P., Abazi, A., Borkamp, R., Lauströer, J., Schulz-Schaeffer, R., Schuck, C., Pernice, W., Heusler, S., & Laumann, D. (2023). Seeing the unseen - enhancing and evaluating undergraduate polarization experiments with interactive Mixed-Reality technology. European Journal of Physics, 44, 065701. https://doi.org/10.1088/1361-6404/acf0a7 Schroeder, N. L., & Cenkci, A. T. (2018). Spatial contiguity and spatial split-attention effects in multimedia learning environments: A meta-analysis. Educational Psychology Review, 30, 679–701. https://doi.org/10.1007/s10648-018-9435-9 Siebert, F., Roesler, E., & Karrer-Gauß, K. (2022). Validating the TA EG questionnaire in germany and comparing affinity for technology between Japan, Mexico, and the USA. PsychArchives. https://doi.org/10.23668/psycharchives.7056 Sırakaya, M., & Sırakaya, D. A. (2020). Augmented reality in STEM education: A systematic review. Interactive Learning Environments, 8, 1556–1569. https://doi.org/10.1080/10494820.2020.1722713 Souchet, A. D., Philippe, S., Lourdeaux, D., & Leroy, L. (2022). Measuring visual fatigue and cognitive load via eye tracking while learning with virtual reality head-mounted displays: A review. International Journal of Human-Computer Interaction, 38, 801–824. https://doi.org/10.1080/10447318.2021.1976509 Stadler, M., Sailer, M., & Fischer, F. (2021). Knowledge as a formative construct: A good alpha is not always better. New Ideas in Psychology, 60, 100832. https://doi.org/10.1016/j.newideapsych.2020.100832 Strzys, M. O., Kapp, S., Thees, M., Klein, P., Lukowicz, P., Knierim, P., et al. (2018). Physics holo.lab learning experience: Using smartglasses for augmented reality labwork to foster the concepts of heat conduction. European Journal of Physics, 39, 035703. https://doi.org/10.1088/1361-6404/aaa8fb Sweller, J. (2011). Cognitive load theory. In J. P. Mestre, & B. H. Ross (eds.), The psychology of learning and motivation: Cognition in education (pp. 37–76). Amsterdam: Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-387691-1.00002-8 Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285. https://doi.org/10.1016/0364-0213(88)90023-7 Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. Springer. Szalavári, Z., Schmalstieg, D., Fuhrmann, A., & Gervautz, M. (1998). “Studierstube”: An environment for collaboration in augmented reality. Virtual Reality, 3, 37–48. https://doi.org/10.1007/BF01409796 Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48, 1273–1296. https://doi.org/10.1007/s11165-016-9602-2 Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316. https://doi.org/10.1016/j.chb.2020.106316 Tsay, C.H.-H., Kofinas, A. K., Trivedi, S. K., & Yang, Y. (2019). Overcoming the novelty effect in online gamified learning systems: An empirical evaluation of student engagement and performance. Journal of Computer Assisted Learning, 36, 128–146. https://doi.org/10.1111/jcal.12385 Wagner, T., Hoyer, C., Ringl, C., & Kuhn, J. (2023). Investigating diffraction phenomena with low-cost material and augmented reality. The Physics Teacher, 61, 402–403. https://doi.org/10.1119/5.0149766 Wilde, M., Bätz, K., Kovaleva, A., & Urhahne, D. (2009). Testing a short scale of intrinsic motivation. Zeitschrift für Didaktik der Naturwissenschaften, 15, 31–45. Xu, W.-W., Su, C.-Y., Hu, Y., & Chen, C.-H. (2022). Exploring the effectiveness and moderators of augmented reality on science learning: A meta-analysis. Journal of Science Education and Technology, 31, 621–637. https://doi.org/10.1007/s10956-022-09982-z Zhang, J., Li, G., Huang, Q., Feng, Q., & Luo, H. (2022). Augmented reality in K-12 education: A systematic review and meta-analysis of the literature from 2000 to 2020. Sustainability, 14, 9725. https://doi.org/10.3390/su14159725