Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích quyền lực của siêu sao sử dụng máy vector hỗ trợ
Tóm tắt
Mục tiêu chính của bài báo này là giải thích ảnh hưởng mà các siêu sao có đối với khán giả. Bài viết thảo luận về những đóng góp đáng kể nhất trong lĩnh vực thuyết phục. Khung lý thuyết này đưa ra một số giả thuyết được thử nghiệm bằng cách sử dụng dữ liệu từ một nghiên cứu thực nghiệm dựa trên khảo sát với người xem phim. Máy vector hỗ trợ (SVM) được sử dụng để phân tích dữ liệu và phát hiện mẫu. Khả năng dự đoán của SVM được đánh giá so với hồi quy tuyến tính và hồi quy logit đa thức. Kết quả cho thấy SVM có tiềm năng lớn trong việc phân tích hành vi của khán giả. Các kết quả của phân tích này cho phép chúng tôi rút ra một số kết luận và ý nghĩa quan trọng cho quá trình tạo ra và duy trì quyền lực của một siêu sao.
Từ khóa
#siêu sao #ảnh hưởng #thuyết phục #phân tích dữ liệu #máy vector hỗ trợ #hành vi khán giảTài liệu tham khảo
Abernethy J, Evgeniou T, Toubia O, Vert JP (2008) Eliciting consumer preferences using robust adaptive choice questionnaires. IEEE Trans Knowl Data Eng 20(2):145–155
AIMC (2011) Estudio General de medios. http://www.aimc.es. Accessed 30 Sept 2013
Albert S (1998) Movie stars and the distribution of financially successful films in the motion picture industry. J Cult Econ 22(4):249–270
Areni ChS, Lutz RJ (1988) The role of argument quality in the elaboration likelihood model. Adv Consum Res 15:197–203
Basuroy S, Chatterjee S, Ravid SA (2003) How critical are critical reviews? The box office effects of film critics, star power, and budgets. J Mark 67(4):103–117
Batra R, Ray M (1985) How advertising works at contact. In: Alwitt LF, Mitchell AA (eds) Psychological processes and advertising effects: theory, research and application. Lawrence Erlbaum Associates, Hillside, pp 13–43
Benítez JM, Martín JC, Román C (2007) Using fuzzy number for measuring quality of service in the hotel industry. Tour manag 28(2):544–555
Bloch PH, Sherrel DL, Ridgway NM (1986) Consumer search: an extended framework. J Consum Res 13:119–126
Cacioppo JT, Petty RE, Berntson GG (1991) Persuasion. Encycl Hum Biol 5:799–810
Capon N, Lutz RJ (1983) The marketing of consumer information. J Mark 47:108–112
Collins A, Hand C, Snell MC (2002) What makes a blockbuster? Economic analysis of film success in the United Kingdom. Manag Decis Econ 23:343–354
Chaiken S, Liberman A, Eagly AH (1989) Heuristic and systematic processing within and beyond the persuasion context. In: Uleman JS, Bargh JA (eds) Unintended thought. Guilford, New York, pp 212–252
Chang CC, Lin CJ (2013) LIBSVM: a library for support vector machines. ACM TIST 2(3):27
Cheung KW, Kwok JT, Law MH, Tsui KCh (2003) Mining customer product ratings for personalized marketing. Decis Support Syst 35:231–243
Christensen SR (2004) Measuring consumer reactions to sponsoring partnerships based upon emotional and attitudinal responses. Center for Marketing Communication. Copenhagen Business School. Research Paper
Christensen TP, Ascione FJ, Bagozzi RP (1997) Understanding how elderly patients process drug information: a test of theory of information processing. Pharm Res 14(11):1589–1596
Cook AJ, Moore K, Steel GD (2004) The taking of a position: a reinterpretation of the elaboration likelihood model. J Theor Soc Behav 34(4):315–331
Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge
Cui D, Curry D (2005) Prediction in marketing using the support vector machine. Mark Sci 24(4):596–615
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
De Vany A, Walls WD (1999) Uncertainty in the movie industry: Does star power reduce the terror of the box office? J Cult Econ 23(4):285–318
Devos O, Ruckebusch C, Durand A, Duponchel L, Huvenne JP (2009) Support vector machines (SVM) in near infrared (NIR) spectroscopy: focus on parameters optimization and model interpretation. Chemometr Intell Lab 96(1):27–33
Dubois D (2011) Ironic effects on persuasion: from communicators to message characteristics. Adv Consum Res 39:22–26
Eagly AH, Chaiken S (1993) The psychology of attitudes. Harcourt Brace Jovanovich, Fort Worth
Elberse A (2007) The power of stars: Do star actors drive the success of movies? J Mark 71(4):102–120
Elberse A, Eliashberg J (2003) Demand and supply dynamics for sequentially released products in international markets: the case of motion pictures. Mark Sci 22(3):329–354
Evgeniou T, Poggio T, Pontil M, Verri A (2002) Regularization and statistical learning theory for data analysis. Comput Stat Data Anal 38:421–432
Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701
Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92
Goldman W (1983) Adventures in the screen trade. Warner Books, New York
Hadida AL (2010) Commercial success and artistic recognition of motion picture projects. J Cult Econ 34(1):45–80
Hoyer WD, Brown SP (1990) Effects of brand awareness on choice for a common, repeat-purchase product. J Consum Res 17(September):141–148
Iman RL, Davenport JM (1980) Approximations of the critical region of the Friedman statistic. Commun Stat Theor M 9(6):571–595
Karniouchina EV (2011) Impact of star and movie buzz on motion picture distribution and box office revenue. Int J Res Mark 8(1):62–74
Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT press, Cambridge
Kruglanski AW, Thompson EP (1999) Persuasion by a single route: a view from the unimodel. Psychol Inq 10(2):83–109
Laros FJM, Steenkamp JEM (2005) Emotions in consumer behavior: a hierarchical approach. J Bus Res 58:1437–1445
Lien NH (2001) Elaboration likelihood model in consumer research: a review. Proc Natl Sci Counc 11(4):301–310
Litman BR (1983) Predicting success of theatrical movies: an empirical study. J Pop Cult 16(9):159–175
Litman BR, Kohl LS (1989) Predicting financial success of motion pictures: the’80s experience. J Media Econ 2(2):35–50
Liu A, Liu Y, Mazumdar T (2013) Star power in the eye of the beholder: a study of the influence of stars in the movie industry. Mark Lett. doi:10.1007/s11002-013-9258-x
Marshall P, Dockendorff M, Ibánez S (2013) A forecasting system for movie attendance. J Bus Res 66:1800–1806
Meyers-Levy J, Maheswaran D (2004) Exploring message framing outcomes when systematic, heuristic, or both types of processing occur. J Consum Psychol 14(1&2):159–167
Ministry of Culture (2011) Encuesta de hábitos y prácticas culturales en España 2010–11. Secretaría General Técnica. Madrid
Mongeau PA, Stiff JB (1993) Specifying causal relationships in the elaboration likelihood model. Commun Theor 3(1):65–72
Nelson RA, Glotfelty R (2012) Movie stars and box office revenues: an empirical analysis. J Cult Econ 36(2):141–166
O’Keefe DJ (1990) Elaboration likelihood model. Persuasion: theory and research. Sage, Newbury Park, pp 95–116
O’Keefe DJ (2002) Persuasion: theory and research, 2nd edn. Sage, Thousand Oaks
Olson E, Thjømøe HM (2003) The effects of peripheral exposure to information on brand preference. Eur J Mark 37:243–255
Petty RE, Cacioppo JT (1981) Attitudes and persuasion: classic and contemporary approaches. William C. Brown, Dubuque
Petty RE, Wegener DT (1999) The elaboration likelihood model: current status and controversies. In: Chaiken S, Trope Y (eds) Dual process theories in social psychology. Guilford, New York, pp 41–72
Petty RE, Cacioppo JT, Schumann D (1983) Central and peripheral routes to advertising effectiveness: the moderating role of involvement. J Consum Res 10:135–146
Prag J, Casavant J (1994) An empirical study of the determinants of revenues and marketing expenditures in the motion picture industry. J Cult Econ 18(3):217–235
Ravid SA (1999) Information, blockbusters, and stars: a study of the film industry. J Bus 72(4):463–492
Ravid SA, Basuroy S (2004) Managerial objectives, the R-rating puzzle, and the production of violent films. J Bus 77(2):S155–S192
Redondo I, Holbrook MB (2010) Modeling the appeal of movie features to demographic segments of theatrical demand. J Cult Econ 34(4):299–315
Sawhney MS, Eliashberg J (1996) A parsimonious model for forecasting gross box-office revenues of motion pictures. Mark Sci 15(2):113–131
Schöllkopf B, Mola A (2002) Learning with kernels. MIT Press, Cambridge
Simonoff JS, Sparrow IR (2000) Predicting movie grosses: winners and losers, blockbusters and sleepers. Chance 13(3):15–24
Steinwart I, Christmann A (2008) Support vector machines. Springer, New York
Thorelli HB, Engledow JL (1980) Information seekers and information systems: a policy perspective. J Mark 44:9–27
Viaene S, Derrig RA, Baesens B, Dedene G (2002) A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection. J Risk Insur 69(3):373–421
Wallace WT, Seigerman A, Holbrook MB (1993) The role of actors and actresses in the success of films: How much is a movie star worth? J Cult Econ 17(1):1–27
Walls WD (2005) Modeling movie success when “nobody knows anything”: conditional stable-distribution analysis of film returns. J Cult Econ 29:177–190
Walls WD (2009) Screen wars, star wars, and sequels: nonparametric reanalysis of movie profitability. Empir Econ 37(2):447–461
Zadeh LA (1988) Fuzzy logic. Computer 21(4):83–93
Zaichkowsky JL (1994) The personal involvement inventory: reduction, revision and application to advertising. J Advert 23(4):59–70
