Analyzing Learned Molecular Representations for Property Prediction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Duvenaud D. K., 2015, Advances in Neural Information Processing Systems, 2224
Gilmer J., 2017, Proceedings of the 34th International Conference on Machine Learning, 70, 1263
Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated Graph Sequence Neural Networks. 2015, arXiv preprint arXiv:1511.05493. https://arxiv.org/abs/1511.05493 (accessed Aug 6, 2019).
Kipf, T. N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. 2016, arXiv preprint arXiv:1609.02907. https://arxiv.org/abs/1609.02907 (accessed Aug 6, 2019).
Defferrard M., 2016, Advances in Neural Information Processing Systems, 3844
Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral Networks and Locally Connected Networks on Graphs. 2013, arXiv preprint arXiv:1312.6203. https://arxiv.org/abs/1312.6203 (accessed Aug 6, 2019).
Battaglia P., 2016, Advances in Neural Information Processing Systems, 4502
Hamilton W., 2017, Advances in Neural Information Processing Systems, 1024
Henaff, M.; Bruna, J.; LeCun, Y. Deep Convolutional Networks on Graph-Structured Data. 2015, arXiv preprint arXiv:1506.05163. https://arxiv.org/abs/1506.05163 (accessed Aug 6, 2019).
Dai H., 2016, International Conference on Machine Learning, 2702
Lei, T.; Jin, W.; Barzilay, R.; Jaakkola, T. Deriving Neural Architectures from Sequence and Graph Kernels. 2017, arXiv preprint arXiv:1705.09037. https://arxiv.org/abs/1705.09037 (accessed Aug 6, 2019).
Kusner, M. J.; Paige, B.; Hernández-Lobato, J. M. Grammar Variational Autoencoder. 2017, arXiv preprint arXiv:1703.01925. https://arxiv.org/abs/1703.01925 (accessed Aug 6, 2019).
Jin, W.; Barzilay, R.; Jaakkola, T. Junction Tree Variational Autoencoder for Molecular Graph Generation. 2018, arXiv preprint arXiv:1802.04364. https://arxiv.org/abs/1802.04364 (accessed Aug 6, 2019).
Jin, W.; Yang, K.; Barzilay, R.; Jaakkola, T. Learning Multimodal Graph-to-Graph Translation for Molecular Optimization. 2018, arXiv preprint arXiv:1812.01070. https://arxiv.org/abs/1812.01070 (accessed Aug 6, 2019).
Mauri A., 2006, Match, 56, 237
Schütt K., 2017, Advances in Neural Information Processing Systems, 991
Kondor, R.; Son, H. T.; Pan, H.; Anderson, B.; Trivedi, S. Covariant Compositional Networks for Learning Graphs. 2018, arXiv preprint arXiv:1801.02144. https://arxiv.org/abs/1801.02144 (accessed Aug 6, 2019).
Faber, F. A.; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.; Vinyals, O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A. Machine Learning Prediction Errors Better than DFT Accuracy. 2017, arXiv preprint arXiv:1702.05532. https://arxiv.org/abs/1702.05532 (accessed Aug 6, 2019).
Ishiguro, K.; Maeda, S.i.; Koyama, M. Graph Warp Module: An Auxiliary Module for Boosting the Power of Graph Neural Networks. 2019, arXiv preprint arXiv:1902.01020. https://arxiv.org/abs/1902.01020 (accessed Aug 6, 2019).
Liu, K.; Sun, X.; Jia, L.; Ma, J.; Xing, H.; Wu, J.; Gao, H.; Sun, Y.; Boulnois, F.; Fan, J. Chemi-net: A Graph Convolutional Network for Accurate Drug Property Prediction. 2018, arXiv preprint arXiv:1803.06236. https://arxiv.org/abs/1803.06236 (accessed Aug 6, 2019).
Mahé P., 2004, Proceedings of the Twenty-First International Conference on Machine Learning, 70
Koller D., 2009, Probabilistic Graphical Models: Principles and Techniques
Nair V., 2010, Proceedings of the 27th International Conference on Machine Learning, 807
Landrum, G. RDKit: Open-Source Cheminformatics; 2006. https://rdkit.org/docs/index.html (accessed 2019-05-24).
Pedregosa F., 2011, Journal of Machine Learning Research, 12, 2825
Distributed Asynchronous Hyperparameter Optimization in Python. https://github.com/hyperopt/hyperopt (accessed 2019-05-24).
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch. 31st Conference on Neural Information Processing Systems; 2017.
Message Passing Neural Networks for Molecule Property Prediction. https://github.com/swansonk14/chemprop (accessed 2019-05-24).
Descriptor computation(chemistry) and (optional) storage for machine learning. https://github.com/bp-kelley/descriptastorus (accessed 2019-05-24).
Chemprop Machine Learning for Molecular Property Prediction. http://chemprop.csail.mit.edu (accessed 2019-05-24).
Ramsundar B., 2019, Deep Learning for th0e Life Sciences
Scripts for running lsc model on other datasets. https://github.com/yangkevin2/lsc_experiments (accessed 2019-05-24).
Navarin, N.; Tran, D. V.; Sperduti, A. Pre-training Graph Neural Networks with Kernels. 2018, arXiv preprint arXiv:1811.06930. https://arxiv.org/abs/1811.06930 (accessed Aug 6, 2019).