Analyzing Learned Molecular Representations for Property Prediction

Journal of Chemical Information and Modeling - Tập 59 Số 8 - Trang 3370-3388 - 2019
Kevin Yang1, Kyle Swanson1, Wengong Jin1, Connor W. Coley2, Philipp Eiden3, Hua Gao4, Angel Guzmán-Pérez4, Timothy Hopper4, Brian Kelley5, Miriam Mathea3, Andrew Palmer3, Volker Settels3, Tommi Jaakkola1, Klavs F. Jensen2, Regina Barzilay1
1Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, Massachusetts 02139, United States
2Department of Chemical Engineering, MIT, Cambridge, Massachusetts 02139, United States
3BASF SE, Ludwigshafen 67063, Germany
4Amgen Inc., Cambridge, Massachusetts 02141, United States
5Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Duvenaud D. K., 2015, Advances in Neural Information Processing Systems, 2224

10.1039/C7SC02664A

10.1007/s10822-016-9938-8

Gilmer J., 2017, Proceedings of the 34th International Conference on Machine Learning, 70, 1263

Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated Graph Sequence Neural Networks. 2015, arXiv preprint arXiv:1511.05493. https://arxiv.org/abs/1511.05493 (accessed Aug 6, 2019).

Kipf, T. N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. 2016, arXiv preprint arXiv:1609.02907. https://arxiv.org/abs/1609.02907 (accessed Aug 6, 2019).

Defferrard M., 2016, Advances in Neural Information Processing Systems, 3844

Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral Networks and Locally Connected Networks on Graphs. 2013, arXiv preprint arXiv:1312.6203. https://arxiv.org/abs/1312.6203 (accessed Aug 6, 2019).

10.1021/acs.jcim.6b00601

10.1038/ncomms13890

Battaglia P., 2016, Advances in Neural Information Processing Systems, 4502

10.1039/C8SC00148K

10.1021/ci400084k

10.1109/JPROC.2015.2494218

10.1007/3-540-45014-9_1

Hamilton W., 2017, Advances in Neural Information Processing Systems, 1024

10.1109/TNN.2008.2005605

Henaff, M.; Bruna, J.; LeCun, Y. Deep Convolutional Networks on Graph-Structured Data. 2015, arXiv preprint arXiv:1506.05163. https://arxiv.org/abs/1506.05163 (accessed Aug 6, 2019).

Dai H., 2016, International Conference on Machine Learning, 2702

Lei, T.; Jin, W.; Barzilay, R.; Jaakkola, T. Deriving Neural Architectures from Sequence and Graph Kernels. 2017, arXiv preprint arXiv:1705.09037. https://arxiv.org/abs/1705.09037 (accessed Aug 6, 2019).

Kusner, M. J.; Paige, B.; Hernández-Lobato, J. M. Grammar Variational Autoencoder. 2017, arXiv preprint arXiv:1703.01925. https://arxiv.org/abs/1703.01925 (accessed Aug 6, 2019).

10.1021/acscentsci.7b00572

Jin, W.; Barzilay, R.; Jaakkola, T. Junction Tree Variational Autoencoder for Molecular Graph Generation. 2018, arXiv preprint arXiv:1802.04364. https://arxiv.org/abs/1802.04364 (accessed Aug 6, 2019).

Jin, W.; Yang, K.; Barzilay, R.; Jaakkola, T. Learning Multimodal Graph-to-Graph Translation for Molecular Optimization. 2018, arXiv preprint arXiv:1812.01070. https://arxiv.org/abs/1812.01070 (accessed Aug 6, 2019).

10.1007/BF00994018

10.1023/A:1010933404324

Mauri A., 2006, Match, 56, 237

10.1021/ci100050t

10.1093/bioinformatics/bti1055

10.1093/bioinformatics/btt105

10.1021/ci010132r

10.1186/s13321-018-0258-y

Schütt K., 2017, Advances in Neural Information Processing Systems, 991

Kondor, R.; Son, H. T.; Pan, H.; Anderson, B.; Trivedi, S. Covariant Compositional Networks for Learning Graphs. 2018, arXiv preprint arXiv:1801.02144. https://arxiv.org/abs/1801.02144 (accessed Aug 6, 2019).

Faber, F. A.; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.; Vinyals, O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A. Machine Learning Prediction Errors Better than DFT Accuracy. 2017, arXiv preprint arXiv:1702.05532. https://arxiv.org/abs/1702.05532 (accessed Aug 6, 2019).

10.1021/acscentsci.8b00507

10.1073/pnas.1810847116

10.1021/ci00057a005

Ishiguro, K.; Maeda, S.i.; Koyama, M. Graph Warp Module: An Auxiliary Module for Boosting the Power of Graph Neural Networks. 2019, arXiv preprint arXiv:1902.01020. https://arxiv.org/abs/1902.01020 (accessed Aug 6, 2019).

Liu, K.; Sun, X.; Jia, L.; Ma, J.; Xing, H.; Wu, J.; Gao, H.; Sun, Y.; Boulnois, F.; Fan, J. Chemi-net: A Graph Convolutional Network for Accurate Drug Property Prediction. 2018, arXiv preprint arXiv:1803.06236. https://arxiv.org/abs/1803.06236 (accessed Aug 6, 2019).

Mahé P., 2004, Proceedings of the Twenty-First International Conference on Machine Learning, 70

Koller D., 2009, Probabilistic Graphical Models: Principles and Techniques

Nair V., 2010, Proceedings of the 27th International Conference on Machine Learning, 807

Landrum, G. RDKit: Open-Source Cheminformatics; 2006. https://rdkit.org/docs/index.html (accessed 2019-05-24).

Pedregosa F., 2011, Journal of Machine Learning Research, 12, 2825

10.1021/ci049714+

10.1093/nar/gkv951

10.1093/bioinformatics/btn592

Distributed Asynchronous Hyperparameter Optimization in Python. https://github.com/hyperopt/hyperopt (accessed 2019-05-24).

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch. 31st Conference on Neural Information Processing Systems; 2017.

Message Passing Neural Networks for Molecule Property Prediction. https://github.com/swansonk14/chemprop (accessed 2019-05-24).

Descriptor computation(chemistry) and (optional) storage for machine learning. https://github.com/bp-kelley/descriptastorus (accessed 2019-05-24).

Chemprop Machine Learning for Molecular Property Prediction. http://chemprop.csail.mit.edu (accessed 2019-05-24).

10.1214/aos/1013203451

10.1017/CBO9780511615412

10.1021/ci400187y

10.1007/BF00994018

10.1021/ci500747n

10.1021/acs.jcim.7b00146

10.1021/ci8004379

10.1039/C6SC05720A

Ramsundar B., 2019, Deep Learning for th0e Life Sciences

Scripts for running lsc model on other datasets. https://github.com/yangkevin2/lsc_experiments (accessed 2019-05-24).

Navarin, N.; Tran, D. V.; Sperduti, A. Pre-training Graph Neural Networks with Kernels. 2018, arXiv preprint arXiv:1811.06930. https://arxiv.org/abs/1811.06930 (accessed Aug 6, 2019).

10.1145/3219819.3219838