Giải pháp phân tích cho phương trình Navier–Stokes với đạo hàm phân cấp Caputo

Springer Science and Business Media LLC - Tập 78 - Trang 137-154 - 2020
D. S. Oliveira1, E. Capelas de Oliveira2
1Coordination of Civil Engineering, UTFPR, Guarapuava, Brazil
2Department of Applied Mathematics, IMECC-UNICAMP, Campinas, Brazil

Tóm tắt

Công trình này nhằm sử dụng phương pháp phân tích đồng hình để thu được các giải pháp phân tích của phương trình Navier–Stokes tuyến tính phân cấp thời gian với tọa độ trụ và của một hệ thống phương trình Navier–Stokes phi tuyến phân cấp thời gian với tọa độ Descartes. Các phương trình này được mô tả thông qua đạo hàm phân cấp thời gian Caputo $$\psi $$ và chứa các kết quả của các trường hợp đặc biệt được trình bày trong tài liệu. Các giải pháp thu được cho phương trình Navier–Stokes phân cấp thời gian được trình bày dưới dạng đồ họa.

Từ khóa


Tài liệu tham khảo

Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Acad. Publ, Boston (1994) Agarwal, R.P., Gala, S., Ragusa, M.A.: A regularity criterion in weak spaces to Boussinesq equations. Mathematics 8(6), 920 (2020) Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017) Bairwa, R.K., Singh, J.: Analytical approach to fractional Navier–Stokes equations by iterative Laplace transform method. In: Singh, J., Kumar, D., Dutta, H., Baleanu, D., Purohit, S. (eds.) International workshop of Mathematical Modelling, Applied Analysis and Computation, vol. 272, pp. 179–188. Springer, Singapore (2018) Benbernou, S., Gala, S., Ragusa, M.A.: On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space. Math. Methods Appl. Sci. 37, 2320:2325 (2014) Birajdar, G.A.: Numerical solution of time fractional Navier–Stokes equation by discrete Adomian decomposition method. Nonlinear Eng. 3, 21–26 (2014) Capelas de Oliveira, E.: Solved Exercises in Fractional Calculus, Study in Systems, Decision and Control 240. Springer Nature Switzerland AG, Cham (2019) Chowdhury, M.S.H., Hashim, I., Abdulaziz, O.: Comparison of homotopy analysis method and homotopy-perturbation method for purely nonlinear fin-type problems. Commun. Nonlinear Sci. Numer. Simul. 14, 371–378 (2009) El-Shahed, M., Salem, A.: On the generalized Navier–Stokes equations. Appl. Math. Comput. 156, 287–293 (2004) Ganji, Z.Z., Ganji, D.D., Ganji, A.D., Rostamian, M.: Analytical solution of time-fractional Navier–Stokes equation in polar coordinate by homotopy perturbation method. Numer. Methods Part. Differ. Equ. 26, 117–124 (2010) Guariglia, E.: Riemann zeta fractional derivative-functional equation and link with primes. Adv. Differ. Equ. 2019, 261 (2019) Guariglia, E., Silvestrov, S.: A functional equation for the Riemann zeta fractional derivative. AIP Conf. Proc. 1798, 020063 (2017) He, J.H.: Homotopy perturbation technique. Comput. Math. Appl. Mech. Eng. 178, 257–262 (1999) Jaber, K.K., Ahmad, R.S.: Analytical solution of the time-fractional Navier–Stokes equation. Ain Shams Eng. J. 9, 1917–1927 (2018) Jafari, H., Daftardar-Gejji, V.: Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition. Appl. Math. Comput. 180, 488–497 (2006) Jafari, H., Seifi, S.: Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun. Nonlinear Sci. Numer. Simul. 14, 2006–2012 (2009) Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012) Jena, R.M., Chakraverty, S.: Solving time-fractional Navier–Stokes equations using homotopy perturbation Elzaki transform. SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-0259-0 Kashkari, B.S., El-Tantawy, S.A., Salas, A.H., El-Sherif, L.S.: Homotopy perturbation method for studying dissipative nonplanar solitons in an electronegative complex plasma, Chaos. Solitons Fractals 130, 10 (2020) Kilbas, A.A., Srivastava, H.M., Trujillo, J.: Theory and Applications of the Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006) Kumar, D., Singh, J., Kumar, S.: A fractional model of Navier–Stokes equation arising in unsteady flow of a viscous fluid. J. Assoc. Arab Univ. Basic Appl. Sci. 17, 14–19 (2015) Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall, Boca Raton (2003) Mahmood, S., Shah, R., Khan, H., Arif, M.: Laplace Adomian decomposition method for multi dimensional time fractional model of Navier–Stokes equation. Symmetry 11, 15 (2019) Mittag-Leffler, M.G.: Sur la nouvelle fonction \(E_{\alpha }(x)\). C. R. Acad. Sci. 137, 554–558 (1903) Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177, 488–494 (2006) Oliveira, D.S., Capelas de Oliveira, E.: Hilfer–Katugampola fractional derivatives. Comput. Appl. Math. 37, 3672–3690 (2017) Prakash, A., Veeresha, P., Prakasha, D.G., Goyal, M.: A new efficient technique for solving fractional coupled Navier–Stokes equations using \(q\)-homotopy analysis transform method. Pramana J. Phys. 93, 10 (2019) Ragab, A.A., Hemida, K.M., Mohamed, M.S., Abd El Salam, M.A.: Solution of time-fractional Navier–Stokes equation by using homotopy analysis method. Gen. Math. Notes 13, 13–21 (2012) Ragusa, M.A.: Commutators of fractional integral operators on Vanishing–Morrey spaces. J. Glob. Optim. 40, 361–368 (2008) Ragusa, M.A., Wu, F.: Regularity criteria via one directional derivative of the velocity in anisotropic Lebesgue spaces to the 3D Navier–Stokes equations. arXiv:2006.05785 (2020) Ross, B. (ed.): Fractional calculus and its applications. In: Proceedings of the International Conference, New Haven. Springer, New York (1974) Sales Teodoro, G., Tenreiro Machado, J.A., Capelas de Oliveira, E.: A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 388, 195–208 (2019) Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach, Yverdon (1993) Singh, B.K., Kumar, P.: FRDTM for numerical simulation of multi-dimensional, time-fractional model of Navier–Stokes equation. Ain Shams Eng. J. 9, 827–834 (2018) Sousa, J.V.C., Capelas de Oliveira, E.: On the \(\psi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018) Zhang, J., Wang, J.: Numerical analysis for Navier–Stokes equations with time fractional derivatives. Appl. Math. Comput. 336, 481–489 (2018)