Analytical solution of the $$\mu (I)-$$ rheology for fully developed granular flows in simple configurations
Tóm tắt
Using the
$$\mu (I)$$
continuum model recently proposed for dense granular flows, we study theoretically steady and fully developed granular flows in two configurations: a plane shear cell and a channel made of two parallel plates (Poiseuille configuration). In such a description, the granular medium behaves like a fluid whose viscosity is a function of the inertia. In the shear plane geometry our calculation predicts that the height of the shear bands scales with
$$U_0^{1/4}P_0^{1/2},\,\mathrm{where }\,U_0$$
is the velocity of the moving plate and
$$P_0$$
the pressure applied at its top. In the Poiseuille configuration, the medium is sheared between the lateral boundaries and a plug flow is located in the center of the channel. The size of the plug flow is found to increase for a decreasing pressure gradient. We show that, for small pressure gradient, the granular material behaves like a Bingham plastic fluid.
Tài liệu tham khảo
Delannay, R., Louge, M., Richard, P., Taberlet, N., Valance, A.: Towards a theoretical picture of dense granular flows down inclines. Nat. Mater. 6, 99–108 (2007)
Jenkins, J.T., Richman, M.W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28(12), 3485–3494 (1985)
MiDi, G.D.R.: On dense granular flows. Eur. Phys. J. E Soft Matter Biol. Phys. 14, 341–365 (2004). doi:10.1140/epje/i2003-10153-0
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)
Iordanoff, I., Khonsari, M.M.: Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime. J. Tribol. 126(1), 137–145 (2004)
Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)
Taberlet, N., Richard, P., Jenkins, J.T., Delannay, R.: Density inversion in rapid granular flows: the supported regime. Eur. Phys. J. E: Soft Matter Biol. Phys. 22(1), 17–24 (2007)
Yohannes, B., Hill, K.M.: Rheology of dense granular mixtures: particle-size distributions, boundary conditions, and collisional time scales. Phys. Rev. E 82, 061301 (2010)
Lagrée, P.-Y., Staron, L., Popinet, S.: The granular column collapse as a continuum: validity of a two-dimensional navier-stokes model with a \(\mu (i)\)-rheology. J. Fluid Mech. 686, 378–408 (2011)
Savage, S.B.: The mechanics of rapid granular flows. In: Volume 24 of Advances in Applied Mechanics, pp. 289–366. Elsevier (1984)
Ancey, C., Coussot, P., Evesque, P.: A theoretical framework for granular suspensions in a steady simple shear flow. J. Rheol. 43(6), 1673–1699 (1999)
Jop, P., Forterre, Y., Pouliquen, O.: Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167–192 (2005)
Cortet, P.-P., Bonamy, D., Daviaud, F., Dauchot, O., Dubrulle, B., Renouf, M.: Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow. EPL 88(1), 14001 (2009)
Brodu, N., Richard, P., Delannay, R.: Shallow granular flows down flat frictional channels: steady flows and longitudinal vortices. Phys. Rev. E 87, 022202 (2013)
Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)
Jenkins, J., Berzi, D.: Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Granul. Matter 12, 151–158 (2010). doi:10.1007/s10035-010-0169-8
Aranson, I.S., Tsimring, L.S.: Continuum description of avalanches in granular media. Phys. Rev. E 64, 020301 (2001)
Josserand, C., Lagrée, P.-Y., Lhuillier, D.: Stationary shear flows of dense granular materials: a tentative continuum modelling. Eur. Phys. J. E Soft Matter Biol. Phys. 14, 127–135 (2004). doi:10.1140/epje/i2003-10141-4
Mills, P., Loggia, D., Tixier, M.: Model for a stationary dense granular flow along an inclined wall. EPL 45(6), 733 (1999)
Louge, M.Y.: Model for dense granular flows down bumpy inclines. Phys. Rev. E 67, 061303 (2003)
Berzi, D., di Prisco, C.G., Vescovi, D.: Constitutive relations for steady, dense granular flows. Phys. Rev. E 84, 031301 (2011)
Ribière, P., Richard, P., Delannay, R., Bideau, D., Toiya, M., Losert, W.: Effect of rare events on out-of-equilibrium relaxation. Phys. Rev. Lett. 95(26), 268001 (2005)
Nichol, K., Zanin, A., Bastien, R., Wandersman, E., van Hecke, M.: Flow-induced agitations create a granular fluid. Phys. Rev. Lett. 104, 078302 (2010)
Reddy, K.A., Forterre, Y., Pouliquen, O.: Evidence of mechanically activated processes in slow granular flows. Phys. Rev. Lett. 106, 108301 (2011)
Pouliquen, O., Forterre, Y.: A non-local rheology for dense granular flows. Phil. Trans. R. Soc. A 367, 5091–5107 (2009)
Kamrin, K., Koval, G.: Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301 (2012)
Börzsönyi, T., Ecke, R.E., McElwaine, J.N.: Patterns in flowing sand: understanding the physics of granular flow. Phys. Rev. Lett. 103(17), 178302 (2009)
Holyoake, A.J., McElwaine, J.N.: High-speed granular chute flows. J. Fluid Mech. 710, 35–71 (2012)
da Cruz, F.: Écoulement des grains sec: frottement et blocage. PhD thesis, École Nationale des Ponts et chaussées (2004)
Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64(5), 051302 (2001)
Buckingham, E.: On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4, 345–376 (1914)
Amarouchene, Y., Boudet, J.F., Kellay, H.: Dynamics and dunes. Phys. Rev. Lett. 86, 4286–4289 (2001)
Komatsu, T.S., Inagaki, S., Nakagawa, N., Nasuno, S.: Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86, 1757–1760 (2001)
Bouchaud, J.-P., Cates, M.E., Ravi Prakash, J., Edwards, S.F.: Hysteresis and metastability in a continuum sandpile model. Phys. Rev. Lett. 74, 1982–1985 (1995)
Boutreux, T., Raphaël, E., de Gennes, P.-G.: Surface flows of granular materials: a modified picture for thick avalanches. Phys. Rev. E 58, 4692–4700 (1998)
Taberlet, N., Richard, P., Henry, E., Delannay, R.: The growth of a super stable heap: an experimental and numerical study. EPL 68(4), 515–521 (2004)
Mangeney, A., Tsimring, L.S., Volfson, D., Aranson, I.S., Bochut, F.: Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys. Res. Lett. 34, L22401 (2007)
Taberlet, N., Richard, P., Delannay, R.: The effect of sidewall friction on dense granular flows. Comput. Math. Appl. 55(2), 230–234 (2008). Modeling Granularity, Modeling Granularity
Crassous, J., Metayer, J.-F., Richard, P., Laroche, C.: Experimental study of a creeping granular flow at very low velocity. J. Stat. Mech. Theory Exp. 2008(03), P03009 (2008)
Richard, P., Valance, A., Métayer, J.-F., Sanchez, P., Crassous, J., Louge, M., Delannay, R.: Rheology of confined granular flows: scale invariance, glass transition, and friction weakening. Phys. Rev. Lett. 101, 248002 (2008)
Blumenfeld, R., Edwards, S., Schwartz, M.: da Vinci fluids, catch-up dynamics and dense granular fluids. Eur. Phys. J. E Soft Matter Biol. Phys. 32, 333–338 (2010). doi:10.1140/epje/i2010-10628-9