Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giải pháp phân tích của phương trình Bagley–Torvik tổng quát
Tóm tắt
Trong bài báo này, chúng tôi nghiên cứu phương trình Bagley–Torvik tổng quát với cấp phân số $(0,2)$. Với một hệ số đo tối đa mới chứa đạo hàm Caputo, sự tồn tại và tính duy nhất của nghiệm cho bài toán giá trị ban đầu được thiết lập. Chúng tôi thu được các nghiệm phân tích dưới dạng hàm Prabhakar và hàm Wiman, và chúng mở rộng các kết quả nổi tiếng về phương trình Bagley–Torvik tổng quát. Hai ví dụ được trình bày nhằm minh chứng cho tính hợp lệ của các kết quả chính của chúng tôi.
Từ khóa
#phương trình Bagley–Torvik #đạo hàm Caputo #nghiệm phân tích #hàm Prabhakar #hàm Wiman #bài toán giá trị ban đầuTài liệu tham khảo
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press, Amsterdam (2016)
Caputo, M., Mainardi, F.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)
Yang, X.J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic Press, Amsterdam (2016)
Hristov, J.: Linear viscoelastic responses: the prony decomposition naturally leads into the Caputo–Fabrizio fractional operator. Front. Phys. 6, 135 (2018)
Yang, X.J., Gao, F., Srivastava, H.M.: A new computational approach for solving nonlinear local fractional PDEs. J. Comput. Appl. Math. 339, 285–296 (2018)
Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)
Hristov, J.: On the Atangana–Baleanu derivative and its relation to the fading memory concept: the diffusion equation formulation. In: Gómez, J., Torres, L., Escobar, R. (eds.) Fractional Derivatives with Mittag-Leffler Kernel. Studies in Systems, Decision and Control. Springer, Cham (2019)
Yang, X.J., Machado, J.A.T., Baleanu, D.: A new fractional derivative involving the normalized sinc function without singular kernel. Eur. Phys. J. Spec. Top. 226(16–18), 3567–3575 (2017)
Cattani, C.: Sinc-fractional operator on Shannon wavelet space. Front. Phys. 6, 118 (2018)
Sun, L., Chen, L.: Free vibrations of a taut cable with a general viscoelastic damper modeled by fractional derivatives. J. Sound Vib. 335(20), 19–33 (2015)
Hristov, J.: Response functions in linear viscoelastic constitutive equations and related fractional operators. Math. Model. Nat. Phenom. 14(3), 305 (2019)
Yang, X.J., Gao, F., Srivastava, H.M.: New rheological models within local fractional derivative. Rom. Rep. Phys. 69, 113 (2017)
Yang, X.J.: New rheological problems involving general fractional derivatives with nonsingular power-law kernels. Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 19(1), 45–52 (2018)
Jiang, Y., Wang, X., Wang, Y.: On a stochastic heat equation with first order fractional noises and applications to finance. J. Math. Anal. Appl. 396(2), 656–669 (2012)
Baleanu, D., Jajarmi, A., Bonyah, E., Hajipour, M.: New aspects of poor nutrition in the life cycle within the fractional calculus. Adv. Differ. Equ. 2018, 230 (2018)
Alkahtani, B.S.T.: Chua’s circuit model with Atangana–Baleanu derivative with fractional order. Chaos Solitons Fractals 89, 547–551 (2016)
Pang, D.H., Jiang, W., Liu, S., Du, J.: Stability analysis for a single degree of freedom fractional oscillator. Physica A 523, 498–506 (2019)
Jajarmi, A., Hajipour, M., Mohammadzadeh, E., Baleanu, D.: A new approach for the nonlinear fractional optimal control problems with external persistent disturbances. J. Franklin Inst. 335(9), 3938–3967 (2018)
Zhang, H., Ye, M.L., Ye, R.Y., Cao, J.D.: Synchronization stability of Riemann–Liouville fractional delay-coupled complex neural networks. Physica A 508, 155–165 (2018)
Yang, X.J., Srivastava, H.M., Machado, J.A.T.: A new fractional derivative without singular kernel: application to the modelling of the steady heat flow. Therm. Sci. 20(2), 753–756 (2016)
Yang, A.M., Han, Y., Li, J., Liu, W.X.: On steady heat flow problem involving Yang–Srivastava–Machado fractional derivative without singular kernel. Therm. Sci. 20(3), 717–721 (2016)
Hristov, J.: Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo–Fabrizio time-fractional derivative. Therm. Sci. 20(2), 757–762 (2016)
Yang, X.J., Machado, J.A.T., Baleanu, D.: Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions. Rom. Rep. Phys. 69, 115 (2017)
Yang, X.J., Gao, F., Ju, Y., Zhou, H.W.: Fundamental solutions of the general fractional-order diffusion equations. Math. Methods Appl. Sci. 41, 9312–9320 (2018)
Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Fractional, M.R.: Bloch equation with delay. Comput. Math. Appl. 61, 1355–1365 (2011)
Agila, A., Baleanu, D., Eid, R., Irfanoglu, B.: Applications of the extended fractional Euler–Lagrange equations model to freely oscillating dynamical systems. Rom. J. Phys. 61(3), 350–359 (2016)
Baghani, O.: On fractional Langevin equation involving two fractional orders. Commun. Nonlinear Sci. Numer. Simul. 42, 675–681 (2017)
Bagley, R.L., Torvik, P.J.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51, 294–298 (1984)
Bagley, R.L.: On the equivalence of the Riemann–Liouville and the Caputo fractional order derivatives in modeling of linear viscoelastic materials. Fract. Calc. Appl. Anal. 10(2), 123–126 (2007)
Slonimsky, G.L.: Laws of mechanical relaxation processes in polymers. J. Polym. Sci., C Polym. Symp. 16(3), 1667–1672 (1967)
Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)
Pritz, T.: Five-parameter fractional derivative model for polymeric damping materials. J. Sound Vib. 265, 935–952 (2003)
Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II) 1, 161–198 (1971)
Bagley, R.L., Torvik, P.J.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)
Pang, D.H., Jiang, W., Liu, S., Niazi, A.U.K.: Well-posedness and iterative formula for fractional oscillator equations with delays. Math. Methods Appl. Sci. 1–13 (2019). https://doi.org/10.1002/mma.5572
Dai, H.Z., Zheng, Z.B., Wang, W.: On generalized fractional vibration equation. Chaos Solitons Fractals 95, 48–51 (2017)
Yuan, J., Zhang, Y.A., Liu, J.M., Shi, B., Gai, M.J., Yang, S.J.: Mechanical energy and equivalent differential equations of motion for single-degree-of-freedom fractional oscillators. J. Sound Vib. 397, 192–203 (2017)
Mohamed, E.G., Mahmoud, A.E.: Numerical solution of the Bagley–Torvik equation by Legendre-collocation method. SeMA J. 74(4), 371–383 (2017)
Stanĕk, S.: Two-point boundary value problems for the generalized Bagley–Torvik fractional differential equation. Cent. Eur. J. Math. 11(3), 574–593 (2013)
Zhong, X.C., Liu, X.L., Liao, S.L.: On a generalized Bagley–Torvik equation with a fractional integral boundary condition. Int. J. Appl. Comput. Math. 3(1), 727–746 (2017)
Labecca, W., Guimaraes, O., Piqueira, J.: Analytical solution of general Bagley–Torvik equation. Math. Probl. Eng. 2015, Article ID 591715 (2015)
Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)
